【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,-2).
(1)求直線AB的解析式;
(2)直線AB上是否存在點(diǎn)C,使△BOC的面積為2?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1);(2)存在,C(2,2)或C(-2,-6).
【解析】
(1)設(shè)直線AB的解析式為,將點(diǎn)A(1,0)、點(diǎn)B(0,﹣2)分別代入解析式即可組成方程組,從而得到AB的解析式;
(2)設(shè)點(diǎn)P的坐標(biāo)為(x,y),根據(jù)三角形面積公式以及S△BOC=2求出C的橫坐標(biāo),再代入直線即可求出y的值,從而得到其坐標(biāo).
解:(1)設(shè)直線AB的解析式為(),
∵直線AB過點(diǎn)A(1,0)、點(diǎn)B(0,﹣2),
∴,解得:,
∴直線AB的解析式為;
(2)設(shè)點(diǎn)C的坐標(biāo)為(x,y),∵S△BOC=2,∴,解得x=±2,
當(dāng)x=2時(shí),∴y=2×2﹣2=2,當(dāng)時(shí),
∴,
∴點(diǎn)C的坐標(biāo)是(2,2)或C(-2,-6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是蜘蛛結(jié)網(wǎng)過程示意圖,一只蜘蛛先以為起點(diǎn)結(jié)六條線,后,再?gòu)木上某點(diǎn)開始按逆時(shí)針方向依次在,,,,,…上結(jié)網(wǎng),若將各線上的結(jié)點(diǎn)依次記為1、2、3、4、5、6、7、8、…,那么第2020個(gè)結(jié)點(diǎn)在( )
A.線上B.線OD上C.線OE上D.線上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線與軸交于點(diǎn)A和點(diǎn)C(2,0),與 軸交于點(diǎn)D,將△DOC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)D恰好與點(diǎn)A重合,點(diǎn)C與點(diǎn)B重合.
(1)直接寫出點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)求和的值;
(3)已知點(diǎn)E是該拋物線的頂點(diǎn),求證:AB⊥EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AB=2,點(diǎn)C,點(diǎn)D在⊙O上,CD=1,直線AD,BC交于點(diǎn)E.
(Ⅰ)如圖1,若點(diǎn)E在⊙O外,求∠AEB的度數(shù);
(Ⅱ)如圖2,若點(diǎn)E在⊙O內(nèi),求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊長(zhǎng)為,,點(diǎn)是上一動(dòng)點(diǎn)(不與、重合),點(diǎn)是上一動(dòng)點(diǎn),且,則面積的最大值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探索發(fā)現(xiàn))
如圖①,是一張直角三角形紙片,,小明想從中剪出一個(gè)以為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當(dāng)沿著中位線、剪下時(shí),所得的矩形的面積最大,隨后,他通過證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為_____________.
(拓展應(yīng)用)
如圖②,在中,,邊上的高,矩形的頂點(diǎn)、分別在邊、上,頂點(diǎn)、在邊上,則矩形面積的最大值為_________.(用含的代數(shù)式表示)
(靈活應(yīng)用)
如圖③,有一塊“缺角矩形”,,,,,小明從中剪出了一個(gè)面積最大的矩形(為所剪出矩形的內(nèi)角),求該矩形的面積.
(實(shí)際應(yīng)用)
如圖④,現(xiàn)有一塊四邊形的木板余料,經(jīng)測(cè)量,,,且,,木匠徐師傅從這塊余料中裁出了頂點(diǎn)、在邊上且面積最大的矩形,求該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是樓梯一部分示意圖,樓梯臺(tái)階寬度均為,高度均為,且,均與樓面垂直,點(diǎn),分別是,的中點(diǎn),,,.
(1)判斷與的位置關(guān)系,并說明理由;
(2)求的值;
(3)求點(diǎn)到水平樓面的距離(精確到).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生的安全意識(shí),我市某中學(xué)組織初三年級(jí)1000名學(xué)生參加了“校園安全知識(shí)競(jìng)賽”,隨機(jī)抽取了一個(gè)班學(xué)生的成績(jī)進(jìn)行整理,分為,,,四個(gè)等級(jí),并把結(jié)果整理繪制成條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖(部分),請(qǐng)依據(jù)如圖提供的信息,完成下列問題:
(1)請(qǐng)估計(jì)本校初三年級(jí)等級(jí)為的學(xué)生人數(shù);
(2)學(xué)校決定從得滿分的3名女生和2名男生中隨機(jī)抽取3人參加市級(jí)比賽,請(qǐng)求出恰好抽到2名女生和1名男生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com