【題目】(列方程(組)及不等式解應(yīng)用題)
春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
【答案】(1)甲種商品每件的進價為30元,乙種商品每件的進價為70元;(2)該商場獲利最大的進貨方案為甲商品購進80件、乙商品購進20件,最大利潤為1200元.
【解析】(1)設(shè)甲種商品每件的進價為x元,乙種商品每件的進價為y元,依題意得:
,解得:.
答:甲種商品每件的進價為30元,乙種商品每件的進價為70元.
(2)設(shè)該商場購進甲種商品m件,則購進乙種商品(100﹣m)件,由已知得:m≥4(100﹣m),解得:m≥80.
設(shè)賣完A、B兩種商品商場的利潤為w,則w=(40﹣30)m+(90﹣70)(100﹣m)=﹣10m+2000,∴當(dāng)m=80時,w取最大值,最大利潤為1200元.
故該商場獲利最大的進貨方案為甲商品購進80件、乙商品購進20件,最大利潤為1200元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給正五邊形的頂點依次編號為1,2,3,4,5.若從某一頂點開始,沿正五邊形的邊順時針方向行走,頂點編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”. 如:小宇在編號為3的頂點上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達編號為1的頂點;然后從1→2為第二次“移位”.若小宇從編號為2的頂點開始,那么第二次“移位”后他所處的頂點的編號為. 第181次“移位”后,則他所處頂點的編號是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c在數(shù)軸上的位置如圖所示:
(1)求 + ﹣ ;
(2)比較a+b,b﹣c,a+c的大小,并用“<”將它們連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=x﹣1的圖象經(jīng)過平移后經(jīng)過點(﹣4,2),此時函數(shù)圖象不經(jīng)過( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一食堂需要購買盒子存放食物,盒子有A,B兩種型號,單個盒子的容量和價格如表.現(xiàn)有15升食物需要存放且要求每個盒子要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性返還現(xiàn)金4元,則購買盒子所需要最少費用為 元.
型號 | A | B |
單個盒子容量(升) | 2 | 3 |
單價(元) | 5 | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鳳凰古城門票事件后,游客相比以往大幅減少,濱江某旅行社為吸引市民組團去旅游,推出了如下收費標(biāo)準(zhǔn):
某單位組織員工去鳳凰古城旅游,共支付給該旅行社旅游費用27000元,請問該單位這次共有多少員工去鳳凰古城旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1 , x2 , 則x1+x2= , x1x2= .
材料2、已知實數(shù)m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.
解:由題知m、n是方程x2﹣x﹣1=0的兩個不相等的實數(shù)根,根據(jù)材料1得
m+n=1,mn=﹣1
∴=
根據(jù)上述材料解決下面問題:
(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2 , 則x1+x2= , x1x2= .
(2)已知實數(shù)m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.
(3)已知實數(shù)p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com