【題目】如圖,正方形的邊長為,點上,連接,則的最大值為________

【答案】

【解析】

先證明當(dāng)AP=DP=2時,有最大值,過點BBEPC于點E,根據(jù)勾股定理求出PB=PC=,根據(jù)三角形的面積法,求出BE的值,進(jìn)而即可得到答案.

設(shè)∠APB=x,∠DPC=y,

∴∠BPC=180°-APB -DPC=180°-x+y),

∵當(dāng)x0y0時,,

,即:,當(dāng)且僅當(dāng)x=y時,,

∴當(dāng)x=y時,x+y有最小值,此時,∠BPC=180°-x+y)有最大值,即有最大值.

∵在正方形中,∠A=DAB=CD,當(dāng)∠APB=DPC時,

APB DPCAAS),

AP=DP=2

PB=PC=,

過點BBEPC于點E,

BE=,

=

故答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】內(nèi)接于的中點,連接,交邊于點,且.

1)如圖1,求的度數(shù);

2)如圖2,作于點于點交于點,求證:;

3)如圖3,在(2)的條件下,連接,若,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于兩點,與軸相交于點,且點與點的坐標(biāo)分別為,點是拋物線的頂點.

1)求二次函數(shù)的關(guān)系式.

2)點為線段上一個動點,過點軸于點.若,的面積為

①求的函數(shù)關(guān)系式,寫出自變量的取值范圍.

②當(dāng)取得最值時,求點的坐標(biāo).

3)在上是否存在點,使為直角三角形?如果存在,請直接寫出點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃組織學(xué)生參加“書法”、“攝影”、“航!、“圍棋”四個課外興趣小組,要求每人必須參加,并且只能選擇其中一個小組,為了解學(xué)生對四個課外興趣小組的選擇情況,學(xué)校從全體學(xué)生中隨機抽取部分學(xué)生進(jìn)行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(部分信息未給出),請你根據(jù)給出的信息解答下列問題:

1)求參加這次問卷調(diào)查的學(xué)生人數(shù),并補全條形統(tǒng)計圖(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));

2m_______n_______;

3)若該校共有1200名學(xué)生,試估計該校選擇“圍棋”課外興趣小組的學(xué)生有多少人?

4)分別用A、B、C、D表示“書法”、“攝影”、“航模”、“圍棋”,小明和小紅從中各選取一個小組,請用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家計劃2035年前實施新能源汽車,某公司為加快新舊動能轉(zhuǎn)換,提高公司經(jīng)濟(jì)效益,決定對近期研發(fā)出的一種新型能源產(chǎn)品進(jìn)行降價促銷.根據(jù)市場調(diào)查:這種新型能源產(chǎn)品銷售單價定為200元時,每天可售出300個;若銷售單價每降低1元,每天可多售出5.已知每個新型能源產(chǎn)品的成本為100.

問:(1)設(shè)該產(chǎn)品的銷售單價為元,每天的利潤為._________(用含的代數(shù)式表示)

2)這種新型能源產(chǎn)品降價后的銷售單價為多少元時,公司每天可獲利32000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線交于點,點

1)求拋物線的解析式;

2)點軸上方拋物線上一點,點是直線上一點,若以為頂點的四邊形是以 為邊的平行四邊形,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦園博會知識競賽,打算購買A、B兩種獎品.如果購買A獎品10件、B獎品5件,共需120元;如果購買A獎品5件、B獎品10件,共需90元.

1AB兩種獎品每件各多少元?

2)若購買AB獎品共100件,總費用不超過600元,則A獎品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過B3,0),C0-3)兩點,點D為頂點.

1)求拋物線的解析式及頂點D的坐標(biāo);

2)點E在拋物線的對稱軸上,FBD上,求BE+EF的最小值;

3)點P是拋物線第四象限的點(不與B、C重合),連接PB,以PB為邊作正方形BPMN,當(dāng)點MN恰好落在對稱軸上時,求出對應(yīng)的P點的坐標(biāo)(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳某百果園店售賣贛南臍橙,已知每千克臍橙的成本價為元,在銷售臍橙的這天時間內(nèi),銷售單價(元/千克)與時間第(天)之間的函數(shù)關(guān)系式為,且為整數(shù)),日銷售量(千克)與時間第(天)之間的函數(shù)關(guān)系式為,且為整數(shù))

1)請你直接寫出日銷售利潤(元)與時間第(天)之間的函數(shù)關(guān)系式;

2)該店有多少天日銷售利潤不低于元?

3)在實際銷售中,該店決定每銷售千克臍橙,就捐贈元給希望工程,在這天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案