【題目】如圖,邊長為a的正△ABC內(nèi)有一邊長為b的內(nèi)接正△DEF,則△AEF的內(nèi)切圓半徑為_____(用含a、b的代數(shù)式表示).
【答案】(a﹣b).
【解析】
根據(jù)切線長定理得到AD=AE=(AB+ACBC),證明△AEF≌△CDE≌△BFD,根據(jù)正切的概念計(jì)算.
解:如圖(1),⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,
AD=AE= [(AB+AC)﹣(BD+CE)]
= [(AB+AC)﹣(BF+CF)]
=(AB+AC﹣BC),
在圖(2)中,由于△ABC,△DEF都為正三角形,
∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
∴△AEF≌△CDE(AAS),
同理可證:△AEF≌△CDE≌△BFD,
∴BF=AE,即AF+AE=AF+BF=a.
設(shè)M是△AEF的內(nèi)心,MH⊥AC于H,
則AH=(AE+AF﹣EF)=(a﹣b),
∵M(jìn)A平分∠BAC,
∴∠HAM=30°;
∴HM=AHtan30°=(a﹣b)=(a﹣b),
故答案為:(a﹣b).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A、B的坐標(biāo)分別為(9,0)、(6,﹣9),△AB'O'是△ABO關(guān)于點(diǎn)A的位似圖形,且O'的坐標(biāo)為(﹣3,0),則點(diǎn)B'的坐標(biāo)為( )
A.(8,﹣12)B.(﹣8,12)
C.(8,﹣12)或(﹣8,12)D.(5,﹣12)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為1的等腰直角△OA1A2,∠OA2A1=90°,且OA2為斜邊在△OA1A2外作等腰直角△OA2A3,以O(shè)A3為斜邊在△OA2A3外作等腰直角△OA3A4,以O(shè)A4為斜邊在△OA3A4外作等腰直角△OA4A5,…連接A1A3,A3A5,A5A7,…分別與OA2,OA4,OA6,…交于點(diǎn)B1,B2,B3,…按此規(guī)律繼續(xù)下去,記△OB1A3的面積為S1,△OB2A5的面積為S2,△OB3A7的面積為S3,…△OBnA2n+1的面積為Sn,則Sn=__(用含正整數(shù)n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)F是BC邊上一點(diǎn),連結(jié)AF,以AF為對角線作正方形AEFG,邊FG與正方形ABCD的對角線AC相交于點(diǎn)H,連結(jié)DG.
(1)填空:若∠BAF=18°,則∠DAG=______°.
(2)證明:△AFC∽△AGD;
(3)若=,請求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋中裝有3個(gè)帶號碼的球,球號分別為2,3,4,這些球除號碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:
先由甲同學(xué)從中隨機(jī)摸出一球,記下球號,并放回?cái)噭,再由乙同學(xué)從中隨機(jī)摸出一球,記下球號。將甲同學(xué)摸出的球號作為一個(gè)兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個(gè)位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.
問:這個(gè)游戲公平嗎?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若CD=4,⊙O的直徑為10,求BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,以點(diǎn)C為坐標(biāo)原點(diǎn),點(diǎn),,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°.
(1)在圖中畫出旋轉(zhuǎn)后的,并寫出點(diǎn)、的坐標(biāo);
(2)已知點(diǎn),在x軸上求作一點(diǎn)P(注:不要求寫出P點(diǎn)的坐標(biāo)),使得PD的值最小,并求出的最小值;
(3)寫出在旋轉(zhuǎn)過程中,線段AB掃過的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線y=kx+6和直線y=(k+1)x+6(k是正整數(shù))及x軸圍成的三角形面積為Sk(k=1,2,3,…,8),則S1+S2+S3+…+S8的值是( 。
A. B. C. 16D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com