【題目】如圖,表中給出的是某月的月歷,任意選取型框中的個數(shù)(如陰影部分所示).請你運用所學的數(shù)學知識來研究,則這個數(shù)的和不可能是(

A.B.C.D.

【答案】C

【解析】

“H”型框中的正中間的數(shù)為x,則其他6個數(shù)分別為x-8,x-6,x-1,x+1,x+6,x+8,表示出這7個數(shù)之和,然后分別列出方程解答即可.

解:設“H”型框中的正中間的數(shù)為x,則其他6個數(shù)分別為x-8,x-6,x-1,x+1,x+6x+8,
7個數(shù)之和為:x-8+x-6+x-1+x+1+x+x+6+x+8=7x
由題意得
A、7x=63,解得:x=9,能求得這7個數(shù);
B7x=70,解得:x=10,能求得這7個數(shù);
C7x=96,解得:x=,不能求得這7個數(shù);
D、7x=105,解得:x=15,能求得這7個數(shù).
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察表格:

1條直線

0個交點

平面分成(1+1)塊

2條直線

1個交點

平面分成(1+1+2)塊

3條直線

1+2)個交點

平面分成(1+1+2+3)塊

4條直線

1+2+3)個交點

平面分成(1+1+2+3+4)塊

根據(jù)表格中的規(guī)律解答問題:

15條直線兩兩相交,有   個交點,平面被分成   塊;

2n條直線兩兩相交,有   個交點,平面被分成   塊;

3)應用發(fā)現(xiàn)的規(guī)律解決問題:一張圓餅切10刀(不許重疊),最多可得到   塊餅.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小蟲從點A出發(fā)在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),爬行的路程依次為:(單位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9

1)小蟲最后是否回到出發(fā)點A,說明理由;

2)小蟲在第幾次爬行后離點A最遠,此時距離點A多少厘米?

3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,那么小蟲一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB110°,∠COD40°,OE平分∠AOCOF平分∠BOD

1)如圖,求∠EOF的度數(shù).

2)如圖,當OB、OC重合時,求∠AOE﹣∠BOF的值;

3)當∠COD從圖的位置繞點O以每秒的速度順時針旋轉(zhuǎn)t秒(0t10);在旋轉(zhuǎn)過程中∠AOE﹣∠BOF的值是否會因t的變化而變化,若不發(fā)生變化,請求出該定值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術優(yōu)勢,一次性收購了20000kg淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).

(1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求ab的值;

(2)設這批淡水魚放養(yǎng)t天后的質(zhì)量為mkg),銷售單價為y/kg.根據(jù)以往經(jīng)驗可知:mt的函數(shù)關系為yt的函數(shù)關系如圖所示.

①分別求出當0≤t≤5050<t≤100時,yt的函數(shù)關系式;

②設將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人將10000元存入銀行,一年后取出5000元,再將余下的本利和再存入銀行,但此時銀行的年利率已下降3個百分點,且到期后還要繳20%的利息稅·第二年到期他取出全部存款共5588元,求銀行原來的年利率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關系,下列說法中錯誤的是( )

A. 3分時汽車的速度是40千米/

B. 12分時汽車的速度是0千米/

C. 從第3分到第6分,汽車行駛了120千米

D. 從第9分到第12分,汽車的速度從60千米/時減少到0千米/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DBC的中點,DEBCAC于點E,已知AD=AB,連接BEAD于點F,下列結(jié)論:①BE=CE;②∠CAD=ABESABF=3SDEF;④△DEF∽△DAE,其中正確的有(  。

A. 1 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=120°,OC是∠AOB內(nèi)部任意一條射線,OD,OE分別是∠AOC,∠BOC的角平分線,下列敘述正確的是(

A. AOD+BOE=60°B. AOD=EOC

C. BOE=2CODD. DOE的度數(shù)不能確定

查看答案和解析>>

同步練習冊答案