如圖,已知矩形ABCD,AB=,BC=3,在BC上取兩點E、F(E在F左邊),以EF為邊作等邊三角形PEF,使頂點P在AD上,PE、PF分別交AC于點G、H.
(1)求△PEF的邊長;
(2)若△PEF的邊EF在線段BC上移動.試猜想:PH與BE有什么數(shù)量關(guān)系?并證明你猜想的結(jié)論.

【答案】分析:(1)要求△PEF的邊長,需構(gòu)造直角三角形,那么就過P作PQ⊥BC于Q.利用∠PFQ的正弦值可求出PF,即△PEF的邊長;
(2)猜想:PH-BE=1.利用∠ACB的正切值可求出∠ACB的度數(shù),再由∠PFE=60°,可得出△HFC是等腰三角形,因此就有BE+EF+CF=BE+PH+2FH=3.再把其中FH用PH表示,化簡即可.
解答:解:(1)過P作PQ⊥BC于Q.
∵矩形ABCD
∴∠B=90°,即AB⊥BC,
又AD∥BC,
∴PQ=AB=,
∵△PEF是等邊三角形,
∴∠PFQ=60°.
在Rt△PQF中,PF=2,
∴△PEF的邊長為2;

(2)在Rt△ABC中,AB=,BC=3,,
∴∠1=30°.(5分)
∵△PEF是等邊三角形,
∴∠2=60°,PF=EF=2.                                 (6分)
∵∠2=∠1+∠3,
∴∠3=30°,∠1=∠3.
∴FC=FH.                                                 (7分)
∵PH+FH=2,BE+EF+FC=3,
∴PH-BE=1.                                                 (8分)
注:每題只給了一種解法,其他解法按本評標(biāo)相應(yīng)給分.
點評:本題利用了矩形、平行線、等邊、等腰三角形的性質(zhì),還有正切函數(shù)等知識,運用的綜合知識很多.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當(dāng)x為何值時,△MAN為等腰直角三角形?
(2)當(dāng)x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認(rèn)為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標(biāo)系,用運動時間t(秒)表示點D的坐標(biāo);
(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當(dāng)t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊答案