【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4 米.

(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據:

【答案】
(1)解:如圖,

在Rt△ABD中,AD=ABsin45°=4 × =4.

在Rt△ACD中,

∵∠ACD=30°,

∴AC=2AD=8.

即新傳送帶AC的長度約為8米;


(2)解:結論:貨物MNQP不用挪走. (5分)

解:在Rt△ABD中,BD=ABcos45°=4 × =4.

在Rt△ACD中,CD=ACcos30°=2

∴CB=CD﹣BD=2 ﹣4≈0.9.

∵PC=PB﹣CB≈4﹣0.9=3.1>2,

∴貨物MNQP不應挪走.


【解析】(1)在Rt△ABD中,根據正弦的定義求出AD,再利用解直角三角形及相關知識求出新傳送帶AC的長度。
(2)利用解直角三角形的知識,在Rt△ABD中,在Rt△ACD中,分別求出BD、CD的長,然后再求出CB、CP的長,判斷PC的值是否大于2即可。
【考點精析】認真審題,首先需要了解特殊角的三角函數(shù)值(分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”),還要掌握解直角三角形(解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據和除法))的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,半徑為1的⊙A的圓心與坐標原點O重合,線段BC的端點分別在x軸與y軸上,點B的坐標為(6,0),且sin∠OCB=

(1)若點Q是線段BC上一點,且點Q的橫坐標為m.
①求點Q的縱坐標;(用含m的代數(shù)式表示)
②若點P是⊙A上一動點,求PQ的最小值;
(2)若點A從原點O出發(fā),以1個單位/秒的速度沿折線OBC運動,到點C運動停止,⊙A隨著點A的運動而移動.
①點A從O→B的運動的過程中,若⊙A與直線BC相切,求t的值;
②在⊙A整個運動過程中,當⊙A與線段BC有兩個公共點時,直接寫出t滿足的條件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.

(1)D是BC的中點;
(2)△BEC∽△ADC;
(3)若 ,求⊙O的半徑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點,過圓上一點C作⊙O的切線CF,分別交AD、BE于點M、N,連接AC、CB,若∠ABC=30°,則AM=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生的身體素質,教育行政部門規(guī)定學生每天參加戶外活動的平均時間不少于1小時.為了解學生參加戶外活動的情況,對部分學生參加戶外活動的時間進行抽樣調查,并將調查結果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據圖中提供的信息解答下列問題:

(1)在這次調查中共調查了多少名學生?
(2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;
(3)求表示戶外活動時間1小時的扇形圓心角的度數(shù);
(4)本次調查中學生參加戶外活動的平均時間是否符合要求?戶外活動時間的眾數(shù)和中位數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBECD都是等腰直角三角形,CA=CBCE=CD,ACB的頂點AECD的斜邊上,若AE=,AD=,則BC的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC30°,EAB邊的中點,以BE為邊作等邊BDE,連接AD、CD

1)求證:ADCD

2)①畫圖:在AC邊上找一點H,使得BH+EH最小(要求:寫出作圖過程并畫出圖形,不用說明作圖依據);

②當BC2時,求出BH+EH的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】⊙O的半徑為5,弦BC=8,點A是⊙O上一點,且AB=AC,直線AO與BC交于點D,則AD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店要選購甲、乙兩種零件,若購進甲種零件10件,乙種零件12件,共需要2100元;若購進甲種零件5件,乙種零件8件,共需要1250元.

1)求甲、乙兩種零件每件分別為多少元?

2)若每件甲種零件的銷售價格為108元,每件乙種零件的銷售價格為140元,根據市場需求,商店決定,購進甲種零件的數(shù)量比購進乙種零件的數(shù)量的3倍還多2件,這樣零件全部售出后,要使總獲利超過976元,至少應購進乙種零件多少件?

查看答案和解析>>

同步練習冊答案