【題目】某運(yùn)動(dòng)品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表.已知購進(jìn)60雙甲種運(yùn)動(dòng)鞋與50雙乙種運(yùn)動(dòng)鞋共用10000元
運(yùn)動(dòng)鞋價(jià)格 | 甲 | 乙 |
進(jìn)價(jià)(元/雙) | m | m﹣20 |
售價(jià)(元/雙) | 240 | 160 |
(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(利潤=售價(jià)﹣進(jìn)價(jià))超過21000元,且不超過22000元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?
【答案】
(1)解:依題意得:60m+50(m﹣20)=10000,
解得m=100
(2)解:設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,則乙種運(yùn)動(dòng)鞋(200﹣x)雙,
根據(jù)題意得, ,
解不等式①得,x> ,
解不等式②得,x≤100,
所以,不等式組的解集是 <x≤100,
∵x是正整數(shù),100﹣84+1=17,
∴共有17種方案
(3)解:設(shè)總利潤為W,則W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000( ≤x≤100),
①當(dāng)50<a<60時(shí),60﹣a>0,W隨x的增大而增大,
所以,當(dāng)x=100時(shí),W有最大值,
即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋100雙,購進(jìn)乙種運(yùn)動(dòng)鞋100雙;
②當(dāng)a=60時(shí),60﹣a=0,W=16000,(2)中所有方案獲利都一樣;
③當(dāng)60<a<70時(shí),60﹣a<0,W隨x的增大而減小,
所以,當(dāng)x=84時(shí),W有最大值,
即此時(shí)應(yīng)購進(jìn)甲種運(yùn)動(dòng)鞋84雙,購進(jìn)乙種運(yùn)動(dòng)鞋116雙
【解析】(1)根據(jù)“購進(jìn)60雙甲種運(yùn)動(dòng)鞋與50雙乙種運(yùn)動(dòng)鞋共用10000元”列出方程并解答;(2)設(shè)購進(jìn)甲種運(yùn)動(dòng)鞋x雙,表示出乙種運(yùn)動(dòng)鞋(200﹣x)雙,然后根據(jù)總利潤列出一元一次不等式,求出不等式組的解集后,再根據(jù)鞋的雙數(shù)是正整數(shù)解答;(3)設(shè)總利潤為W,根據(jù)總利潤等于兩種鞋的利潤之和列式整理,然后根據(jù)一次函數(shù)的增減性分情況討論求解即可.
【考點(diǎn)精析】通過靈活運(yùn)用一元一次不等式組的應(yīng)用,掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江南農(nóng)場(chǎng)收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為 ,則a的值是( )
A.4
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種新型節(jié)能電水壺并加以銷售,現(xiàn)準(zhǔn)備在甲城市和乙城市兩個(gè)不同地方按不同銷售方案進(jìn)行銷售,以便開拓市場(chǎng). 若只在甲城市銷售,銷售價(jià)格為y(元/件)、月銷量為x(件),y是x的一次函數(shù),如表,
月銷量x(件) | 1500 | 2000 |
銷售價(jià)格y(元/件) | 185 | 180 |
成本為50元/件,無論銷售多少,每月還需支出廣告費(fèi)72500元,設(shè)月利潤為W甲(元)
(利潤=銷售額﹣成本﹣廣告費(fèi)).
若只在乙城市銷售,銷售價(jià)格為200元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),40≤a≤70),當(dāng)月銷量為x(件)時(shí),每月還需繳納 x2元的附加費(fèi),設(shè)月利潤為W乙(元)(利潤=銷售額﹣成本﹣附加費(fèi)).
(1)當(dāng)x=1000時(shí),y甲=元/件,w甲=元;
(2)分別求出W甲 , W乙與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時(shí),在甲城市銷售的月利潤最大?若在乙城市銷售月利潤的最大值與在甲城市銷售月利潤的最大值相同,求a的值;
(4)如果某月要將5000件產(chǎn)品全部銷售完,請(qǐng)你通過分析幫公司決策,選擇在甲城市還是在乙城市銷售才能使所獲月利潤較大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),△ABD的周長(zhǎng)為16cm,則△DOE的周長(zhǎng)是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點(diǎn)E在邊DC上),折疊后端點(diǎn)D恰好落在邊OC上的點(diǎn)F處.若點(diǎn)D的坐標(biāo)為(10,8),則點(diǎn)E的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+5的圖象與反比例函數(shù)y2= (k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y2>y1>0時(shí),寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=a,AD=b,點(diǎn)M為BC邊上一動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B、C不重合),連接AM,過點(diǎn)M作MN⊥AM,垂足為M,MN交CD或CD的延長(zhǎng)線于點(diǎn)N.
(1)求證:△CMN∽△BAM;
(2)設(shè)BM=x,CN=y,求y關(guān)于x的函數(shù)解析式.當(dāng)x取何值時(shí),y有最大值,并求出y的最大值;
(3)當(dāng)點(diǎn)M在BC上運(yùn)動(dòng)時(shí),求使得下列兩個(gè)條件都成立的b的取值范圍:①點(diǎn)N始終在線段CD上,②點(diǎn)M在某一位置時(shí),點(diǎn)N恰好與點(diǎn)D重合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com