【題目】某公司生產(chǎn)一種新型節(jié)能電水壺并加以銷售,現(xiàn)準(zhǔn)備在甲城市和乙城市兩個不同地方按不同銷售方案進行銷售,以便開拓市場. 若只在甲城市銷售,銷售價格為y(元/件)、月銷量為x(件),y是x的一次函數(shù),如表,

月銷量x(件)

1500

2000

銷售價格y(元/件)

185

180

成本為50元/件,無論銷售多少,每月還需支出廣告費72500元,設(shè)月利潤為W(元)
(利潤=銷售額﹣成本﹣廣告費).
若只在乙城市銷售,銷售價格為200元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),40≤a≤70),當(dāng)月銷量為x(件)時,每月還需繳納 x2元的附加費,設(shè)月利潤為W(元)(利潤=銷售額﹣成本﹣附加費).
(1)當(dāng)x=1000時,y=元/件,w=元;
(2)分別求出W , W與x間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)當(dāng)x為何值時,在甲城市銷售的月利潤最大?若在乙城市銷售月利潤的最大值與在甲城市銷售月利潤的最大值相同,求a的值;
(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在甲城市還是在乙城市銷售才能使所獲月利潤較大?

【答案】
(1)190;67500
(2)解:w=x(y﹣50)﹣72500=﹣ x2+150x﹣72500,

w=﹣ x2+(200﹣a)x


(3)解:∵0<x<15000

∴當(dāng)x=﹣ =7500時,w最大;

由題意得, = ,

解得a1=60,a2=340(不合題意,舍去).所以a=60


(4)解:當(dāng)x=5000時,w=427500,w=﹣5000a+750000,

若w<w,427500<﹣5000a+750000,解得a<64.5;

若w=w,427500=﹣5000a+750000,解得a=64.5;

若w>w,427500>﹣5000a+750000,解得a>64.5.

所以,當(dāng)40≤a<64.5時,選擇在乙銷售;

當(dāng)a=64.5時,在甲和乙銷售都一樣;

當(dāng)64.5<a≤70時,選擇在甲銷售


【解析】解:(1)設(shè)y=kx+b, 由題意 ,解得 ,
∴y=﹣ x+200,
∴x=1000時,y=190,
w=x(y﹣50)﹣72500=﹣ x2+150x﹣72500,
x=1000時,w=67500,
故答案分別為190,67500.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點C,E是AB上一點,延長CE交⊙O于點D.
(1)如圖①,求∠T和∠CDB的大;
(2)如圖②,當(dāng)BE=BC時,求∠CDO的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形ABCD中,ADBC,AC、BD相交于點O,AB⊥AC,AD=CD,AB=3,BC=5.求:
(1)tan∠ACD的值;
(2)梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結(jié)DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE= BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與EFGH均為正方形,點B、F在函數(shù)y= (x>0)的圖象上,點G、C在函數(shù)y=﹣ (x<0)的圖象上,點A、D在x軸上,點H、E在線段BC上,則點G的縱坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,A的坐標(biāo)為(1, ),則點C的坐標(biāo)為(
A.(﹣ ,1)
B.(﹣1,
C.( ,1)
D.(﹣ ,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運動品牌專賣店準(zhǔn)備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表.已知購進60雙甲種運動鞋與50雙乙種運動鞋共用10000元

運動鞋價格

進價(元/雙)

m

m﹣20

售價(元/雙)

240

160


(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)超過21000元,且不超過22000元,問該專賣店有幾種進貨方案?
(3)在(2)的條件下,專賣店準(zhǔn)備決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某林場計劃購買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去21000元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D為AC邊的中點,且DB⊥BC,BC=4,CD=5.

(1)求DB的長;
(2)在△ABC中,求BC邊上高的長.

查看答案和解析>>

同步練習(xí)冊答案