【題目】已知:如圖,△ABC內(nèi)接于⊙O,且AB=AC,點(diǎn)D在⊙O上,AD⊥AB于點(diǎn)A,AD與BC交于點(diǎn)E,F在DA的延長(zhǎng)線(xiàn)上,且AF=AE.
(1)求證:BF與⊙O相切.
(2)若BF=5,cosC=,求⊙O的半徑.
【答案】(1)證明見(jiàn)解析;(2)⊙O半徑為.
【解析】
(1)連接BD,由于AB=AC,則∠ABC=∠C,由AF=AE,則∠EBA=∠FBA,從而得出∠ABD+∠FBA=90°,即OB⊥BF,則BF是⊙O切線(xiàn);
(2) 因?yàn)椤?/span>C=∠D,得cos∠D==,設(shè)BD=4x,DF=5x,由BD2+BF2=DF2列出關(guān)于x的方程并求解,從而求出BD.
(1)連接BD,
∵AD⊥AB,
∴∠BAD=90°,
∴BD是直徑,BD過(guò)圓心,
∵AB=AC,
∴∠ABC=∠C,
又∵∠C=∠D,
∴∠ABC=∠D,
∵AD⊥AB,
∴∠ABD+∠D=90°,
∵AF=AE,BA⊥EF,
∴AB是EF的垂直平分線(xiàn),
∴BE=BF,
∴∠EBA=∠FBA,
∴∠ABF=∠D,
∵∠ABD+∠D=90°,
∴∠ABD+∠ABF=90°,
∴∠DBF=90°,
∴OB⊥BF,
又∵OB是⊙O的半徑,
∴BF是⊙O切線(xiàn);
(2)∵∠C=∠D,
∴cos∠D=cos∠C=,
在Rt△BDF中,
cos∠D==,
∴設(shè)BD=4x,DF=5x,
又∵BD2+BF2=DF2,
∴(4x)2+52=(5x)2,
x=,
∵x>0
∴x=,
∴BD=4×= ,
∴OB=BD=,
∴⊙O半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx向上平移2個(gè)單位之后,正好與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求平移后拋物線(xiàn)的表達(dá)式;
(2)點(diǎn)Q是直線(xiàn)AC上方的拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)Q作QE垂直于x軸,若以點(diǎn)B、Q、E為頂點(diǎn)的角形與△AOC相似,請(qǐng)求出Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西特產(chǎn)專(zhuān)賣(mài)店銷(xiāo)售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷(xiāo)售可增加20千克,若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)D、E分別在AC、AB上,且△ADE是直角三角形,△BDE是等腰三角形,則BE=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,平面內(nèi)的兩條直線(xiàn)點(diǎn)在直線(xiàn)上,點(diǎn)在直線(xiàn)上,過(guò)兩點(diǎn)分別作的垂線(xiàn),垂足分別為,我們把線(xiàn)段叫做線(xiàn)段在直線(xiàn)上的正投影,其長(zhǎng)度可記為或特別地,線(xiàn)段在直線(xiàn)上的正投影就是線(xiàn)段.請(qǐng)依據(jù)上述定義解決如下問(wèn)題:
(1)如圖①,若,則 .
(2)如圖②,在矩形中,,,則 .
(3)如圖③,在矩形中,點(diǎn)在邊上(),連接、,
①若,求矩形的面積.
②如圖④,點(diǎn)在延長(zhǎng)線(xiàn)上,連按,若,,,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)四個(gè)數(shù)學(xué)活動(dòng)小組參加測(cè)量操場(chǎng)旗桿高度的綜合實(shí)踐活動(dòng),如圖是四個(gè)小組在不同位置測(cè)量后繪制的示意圖,用測(cè)角儀測(cè)得旗桿頂端A的仰角記為α,CD為測(cè)角儀的高,測(cè)角儀CD的底部C處與旗桿的底部B處之間的距離記為CB,四個(gè)小組測(cè)量和計(jì)算數(shù)據(jù)如下表所示:
數(shù)據(jù)組別 | CD的長(zhǎng)(m) | BC的長(zhǎng)(m) | 仰角α | AB的長(zhǎng)(m) |
第一組 | 1.59 | 13.2 | 32° | 9.8 |
第二組 | 1.58 | 13.4 | 31° | 9.6 |
第三組 | 1.57 | 14.1 | 30° | 9.7 |
第四組 | 1.56 | 15.2 | 28° |
(1)利用第四組學(xué)生測(cè)量的數(shù)據(jù),求旗桿AB的高度(精確到0.1m);
(2)四組學(xué)生測(cè)量旗桿高度的平均值約為 m(精確到0.1m).
(參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】石獅泰禾某童裝專(zhuān)賣(mài)店在銷(xiāo)售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷(xiāo)售價(jià)為120元時(shí),每天可售出20件,為了迎接“十一”國(guó)慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷(xiāo)售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.
(1)設(shè)每件童裝降價(jià)x元時(shí),每天可銷(xiāo)售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)鈍角△ABC(其中∠ABC=120°)繞點(diǎn)B順時(shí)針旋轉(zhuǎn)得△A1BC1,使得C點(diǎn)落在AB的延長(zhǎng)線(xiàn)上的點(diǎn)C1處,連接AA1.
(1)寫(xiě)出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線(xiàn),交DA的延長(zhǎng)線(xiàn)于點(diǎn)E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com