【題目】某數(shù)學(xué)興趣小組在學(xué)習(xí)了《銳角三角函數(shù)》以后,開展測(cè)量物體高度的實(shí)踐活動(dòng),測(cè)量一建筑物CD的高度,他們站在B處仰望樓頂C,測(cè)得仰角為30°,再往建筑物方向走20m,到達(dá)點(diǎn)F處測(cè)得樓頂C的仰角為45°(BFD在同一直線上).已知觀測(cè)員的眼睛與地面距離為1.5m(即AB=1.5m),求這棟建筑物CD的高度.(參考數(shù)據(jù): ≈1.732, ≈1.414.結(jié)果保留整數(shù))
【答案】這棟建筑物CD的高度約為29m
【解析】試題分析:延長(zhǎng)AE交CD于點(diǎn)G,設(shè)CG=xm,在直角△CGE中利用x表示出EG,然后在直角△ACG中,利用x表示出AG,根據(jù)AE=AG-EG即可列方程求得x的值,進(jìn)而求出CD的長(zhǎng).
試題解析:
解:延長(zhǎng)AE交CD于點(diǎn)G.
設(shè)CG=xm,
在直角△CGE中,∠CEG=45°,則EG=CG=xm.
在直角△ACG中,AG= .
∵AG-EG=AE, ∴,
解得: (m).
則CD=27.32+1.5=28.82≈29(m).
答:這棟建筑物CD的高度約為29m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形、菱形、正方形都一定具有的性質(zhì)是( 。
A.鄰邊相等B.對(duì)角線互相平分
C.四個(gè)角都是直角D.對(duì)角線相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線分別與x、y軸交于點(diǎn)A和B.
(1)求點(diǎn)A、B的坐標(biāo);
(2)求原點(diǎn)O到直線的距離;
(3)若圓M的半徑為2,圓心M在y軸上,當(dāng)圓M與直線相切時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工人師傅要將邊長(zhǎng)為4m和3m的平行四邊形框架固定,現(xiàn)有下列長(zhǎng)度的木棒,在木棒的兩端釘上達(dá)到固定平行四邊形的目的,不符合要求的是( 。
A.2m
B.3m
C.4m
D.8m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在解方程組 時(shí),由于粗心,甲看錯(cuò)了方程組中的a,而得解為 .乙看錯(cuò)了方程組中的b,而得解為 .
(1)甲把a(bǔ)看成了什么,乙把b看成了什么;
(2)求出原方程組的正確解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解一元二次方程x2﹣8x+13=0,變形正確的是( 。
A.(x﹣5)2=﹣13B.(x﹣4)2=﹣13C.(x﹣4)2=3D.(x﹣8)2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若y軸上的點(diǎn)P到x軸的距離為3,則點(diǎn)P的坐標(biāo)是( )
A.(3,0)
B.(0,3)
C.(3,0)或(﹣3,0)
D.(0,3)或(0,﹣3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com