某單位為響應政府發(fā)出的全民健身的號召,打算在長和寬分別為20m和11m的矩形大廳內修建一個60m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費用為20元/m2,新建(含裝修)墻壁的費用為80元/m2.設健身房的高為3m,一面舊墻壁AB的長為xm,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當投入的資金為4800元時,問利用舊墻壁的總長度為多少?

【答案】分析:(1)根據(jù)題意可得AB=x,AB•BC=60,所以BC=.求得y與x的函數(shù)解析式.
(2)把y=4800代入函數(shù)解析式整理解得x的值即可.
解答:解:(1)根據(jù)題意,AB=x,AB•BC=60,
所以BC=
y=20×3(x+)+80×3(x+),
即y=300(x+).

(2)把y=4800代入y=300(x+),得
4800=300(x+).
整理得x2-16x+60=0.
解得x1=6,x2=10.
經檢驗,x1=6,x2=10都是原方程的根.
由8≤x≤12,只取x=10.
所以利用舊墻壁的總長度10+=16m.
點評:本題考查的是二次函數(shù)的實際應用同時也考查了矩形的面積計算公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某單位為響應政府發(fā)出的全民健身的號召,打算在長和寬分別為20m和11m的矩形大廳內修建一個60m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費用為20元/m2,新建精英家教網(含裝修)墻壁的費用為80元/m2.設健身房的高為3m,一面舊墻壁AB的長為xm,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當投入的資金為4800元時,問利用舊墻壁的總長度為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某單位為響應政府發(fā)出的全民健身的號召,打算在長和寬分別為20m 和11m的矩形大廳內修建一個60㎡的矩形健身房ABCD,該健身房的四面墻壁中有兩側沿用大廳的舊墻壁(如平面示意圖),已知裝修舊墻壁的費用為20元/㎡,新建(含裝修)墻壁的費用為80元/㎡.設健身房的高為3m,一面舊墻壁AB的長為xm,修健身房方墻壁的總投入為y元.求y與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》?碱}集(18):2.6 何時獲得最大利潤(解析版) 題型:解答題

某單位為響應政府發(fā)出的全民健身的號召,打算在長和寬分別為20m和11m的矩形大廳內修建一個60m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費用為20元/m2,新建(含裝修)墻壁的費用為80元/m2.設健身房的高為3m,一面舊墻壁AB的長為xm,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當投入的資金為4800元時,問利用舊墻壁的總長度為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2002•桂林)某單位為響應政府發(fā)出的全民健身的號召,打算在長和寬分別為20m和11m的矩形大廳內修建一個60m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費用為20元/m2,新建(含裝修)墻壁的費用為80元/m2.設健身房的高為3m,一面舊墻壁AB的長為xm,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當投入的資金為4800元時,問利用舊墻壁的總長度為多少?

查看答案和解析>>

同步練習冊答案