【題目】閱讀材料:我們都知道,
于是,-2x2+40x+5
=-2(x2-20x)+5
=-2(x2-20x+100)+200+5
=-2(x-10)2+205
又因為,所以,
所以,-2x2+40x+5有最大值205.
如圖,某農戶準備用長34米的鐵柵欄圍成一邊靠墻的長方形羊圈ABCD和一個邊長為1米的正方形狗屋CEFG.設AB=x米.
(1)請用含x的代數(shù)式表示BC的長(直接寫答案);
(2)設山羊活動范圍即圖中陰影部分的面積為S,試用含x的代數(shù)式表示S,并計算當x=5時S的值;
(3)試求出山羊活動范圍面積S的最大值.
【答案】(1)BC=32-2x;(2)S=-2x2+32x-1,當x=5時,S=109米2;(3)山羊活動范圍ABGFE面積S的最大值是127平方米.
【解析】
(1)依題意得AB=DC=x,EF=FG=1,根據(jù)鐵柵欄總長為34米即可用x表示出BC的長;
(2)根據(jù)S=S長方形ABCD-S正方形CEFG列出S與x的函數(shù)關系式,進而求出當x=5時S的值;
(3)配方后根據(jù)完全平方式恒小于等于0,即可求出最大值以及x的值即可.
(1)依題意得AB=DC=x,EF=FG=1,
∵AB+DC+BC+EF+FG=34,
∴2x+BC+2=34,
∴BC=32-2x;
(2)依題意得S=S長方形ABCD-S正方形CEFG=x(32-2x)-1=-2x2+32x-1,
當x=5時,S=-2×52+32×5-1=109(米2);
(3)S=-2x2+32x-1=-2(x2-16x+64)+127=-2(x-8)2+127,
又因為-2<0,
所以,(x-8)2≥0,-2(x-8)2≤0,-2(x-8)2+127≤127,
所以,山羊活動范圍ABGFE面積S的最大值是127平方米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,為厲行節(jié)能減排,倡導綠色出行,某公司擬在我市甲、乙兩個街道社區(qū)投放一批共享單車(俗稱“小黃車”),這批自行車包括A、B兩種不同款型.
成本單價 (單位:元) | 投放數(shù)量 (單位:輛) | 總價(單位:元) | |
A型 | x | 50 | 50x |
B型 | x+10 | 50 |
|
成本合計(單位:元) | 7500 |
問題1:看表填空
如圖2所示,本次試點投放的A、B型“小黃車”共有 輛;用含有x的式子表示出B型自行車的成本總價為 ;
問題2:自行車單價
試求A、B兩型自行車的單價各是多少?
問題3:投放數(shù)量
現(xiàn)在該公司采取如下方式投放A型“小黃車”:甲街區(qū)每100人投放n輛,乙街區(qū)每100人投放(n+2)輛,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有人,求甲街區(qū)每100人投放A型“小黃車”的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,AB=2,BC=4,現(xiàn)將△ABC繞頂點B順時針方向旋轉△A′BC′的位置,此時A′C′與BC的交點D是BC的中點,則線段C′D的長度是( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連結BF,CE.下列說法:①△ABD和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列圖形:
它們是按一定規(guī)律排列的,依照此規(guī)律,第5個圖形中的五角星的個數(shù)為___,第n個圖形中的五角星(n為正整數(shù))個數(shù)為____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,∠A=30°.
(1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);
(2)連接BD,求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC,CD上分別找一點M,N,使△AMN周長最小,則∠AMN+∠ANM的角度為________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com