如圖,兩個同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是______.

如圖,當AB與小圓相切時有一個公共點D,
連接OA,OD,可得OD⊥AB,
∴D為AB的中點,即AD=BD,
在Rt△ADO中,OD=3,OA=5,
∴AD=4,
∴AB=2AD=8;
當AB經(jīng)過同心圓的圓心時,弦AB最大且與小圓相交有兩個公共點,
此時AB=10,
所以AB的取值范圍是8<AB≤10.
故答案為:8<AB≤10
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中,AB是直徑,AD是弦,∠ADE=60°,∠C=30°.
(1)求證:CD是⊙O的切線;
(2)若BC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線AB經(jīng)過⊙O上的點C,OA=OB,CA=CB.
(1)直線AB是否與⊙O相切?為什么?
(2)如果⊙O的直徑為4cm,AB=8cm,求OA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,已知AB=5,BC=8,AC=7,動點P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線段PQ的最小值等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,∠C=90°,AC=6,BC=8,以C為圓心r為半徑畫⊙C,使⊙C與線段AB有且只有兩個公共點,則r的取值范圍是(  )
A.6≤r≤8B.6≤r<8C.
24
5
<r
≤6
D.
24
5
<r
≤8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)證明:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的弦,CO⊥OA,OC交AB于點P,且PC=BC,BC是⊙O的切線嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑AB=18,AC和BD是它的兩條切線,CD與⊙O相切于E,且與AC、BD相交于點C、D,設(shè)
AC=x,BD=y,試求xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,點D是
BC
的中點,PD切⊙O于點D.
(1)求證:DP⊥AP;
(2)若PD=12,PC=8,求⊙O的半徑R的長.

查看答案和解析>>

同步練習(xí)冊答案