【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號(hào)是 .
【答案】①③.
【解析】
試題分析:①易證△ABF≌△BCG,即可解題;②易證△BNF∽△BCG,即可求得的值,即可解題;③作EH⊥AF,令A(yù)B=3,即可求得MN,BM的值,即可解題;④連接AG,F(xiàn)G,根據(jù)③中結(jié)論即可求得S四邊形CGNF和S四邊形ANGD,即可解題.
①∵四邊形ABCD為正方形,∴AB=BC=CD,
∵BE=EF=FC,CG=2GD,∴BF=CG,
∵在△ABF和△BCG中,,
∴△ABF≌△BCG,∴∠BAF=∠CBG,
∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正確;
②∵在△BNF和△BCG中,,
∴△BNF∽△BCG,∴,∴BN=NF;②錯(cuò)誤;
③作EH⊥AF,令A(yù)B=3,則BF=2,BE=EF=CF=1,
AF=,
∵S△ABF=AFBN=ABBF,∴BN=,NF=BN=,
∴AN=AF﹣NF=,∵E是BF中點(diǎn),
∴EH是△BFN的中位線,∴EH=,NH=,BN∥EH,
∴AH=,,解得:MN=,
∴BM=BN﹣MN=,MG=BG﹣BM=,∴,③正確;
④連接AG,F(xiàn)G,根據(jù)③中結(jié)論,
則NG=BG﹣BN=,∵S四邊形CGNF=S△CFG+S△GNF=CGCF+NFNG=1+,
S四邊形ANGD=S△ANG+S△ADG=ANGN+ADDG=,∴S四邊形CGNF≠S四邊形ANGD,④錯(cuò)誤;
故答案為 ①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)p為邊AB上的一點(diǎn),CPB=60°,沿CP折疊正方形后,點(diǎn)B落在平面內(nèi)B’處,B’的坐標(biāo)為( )
A.(2, 2)B.(, 2-2)C.(2, 4-2)D.(, 4-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)的圖象如圖所示,下列結(jié)論中:①;②;③(的實(shí)數(shù));④;⑤,其中正確的是( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象過(guò)點(diǎn)A(1,1),將其圖象沿直線y=x平移到點(diǎn)B(2,2)處,過(guò)點(diǎn)作BC⊥x軸,交原圖象于點(diǎn)D,則陰影部分(△ABD)的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)活動(dòng)小組在一次活動(dòng)中,對(duì)一個(gè)數(shù)字問題作如下研究:
(問題發(fā)現(xiàn))如圖①,在等邊三角形ABC中,點(diǎn)M是BC上任意一點(diǎn),連接AM,以AM為邊作等邊△AMN,連接CN,判斷CN和AB的位置關(guān)系: ;
(變式探究)如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M是BC邊上任意一點(diǎn)(不含端點(diǎn)B,C),連接AM,以AM為邊作等腰三角形AMN,使頂角∠AMN=∠ABC,MA=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.
(解決問題)如圖③,在正方形ADBC中,點(diǎn)M為BC邊上一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中心,連接CN,若正方形ADBC的邊長(zhǎng)為8,CN=,直接寫出正方形AMEF的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程有兩個(gè)正整數(shù)根(m是正整數(shù)),且、滿足,。
(1)求的值; (2)求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)I是的內(nèi)心,AI的延長(zhǎng)線交的外接圓于點(diǎn)D,交BC邊于點(diǎn)E,
求證:(1)ID=BD
(2)BD2 =DA·ED
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請(qǐng)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A1B1C1;并寫出A1、B1、C1三點(diǎn)的坐標(biāo).
(2)求出(1)中C點(diǎn)旋轉(zhuǎn)到C1點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E是邊AB上的任意一點(diǎn)(點(diǎn)E不與點(diǎn)B重合),沿DE翻折△DBE,使點(diǎn)B落在點(diǎn)F處,連接AF,則當(dāng)線段AF的長(zhǎng)取最小值時(shí),tan∠FBD是____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com