一個(gè)等邊三角形的內(nèi)切圓的半徑為r、外接圓的半徑為R,那么數(shù)學(xué)公式=________.

2
分析:首先根據(jù)題意畫出圖形,設(shè)圓心為O,內(nèi)切圓與三角形相切于E、F、M點(diǎn),連接OF、OA,由題意可知外接圓與內(nèi)切圓屬同心圓,故OA為外接圓的半徑,OF為內(nèi)切圓的半徑,由∠OAF=30°,OF⊥AC,即可推出結(jié)論.
解答:解:如圖,連接OF、OA,
∵等邊三角形ABC,
∴外接圓與內(nèi)切圓屬同心圓,
∴∠OAF=30°,OF⊥AC,
∴OA:OF=2:1,
∴R:r=2,
故答案為2.
點(diǎn)評(píng):本題主要考查等邊三角形的內(nèi)切圓、外接圓的性質(zhì),等邊三角形的性質(zhì),關(guān)鍵在于根據(jù)題意畫出圖形,作輔助線構(gòu)建直角三角形,解直角三角形即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,等邊三角形ABC中,AD⊥BC于D,△ABD的內(nèi)切⊙O的半徑為R,另有一個(gè)⊙O1與AB,BD,⊙O都相切,其半徑為r1,則⊙O與⊙O1的面積之比為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廊坊一模)圓的滾動(dòng)問題探索:
(1)如圖1,一個(gè)半徑為r的圓沿直線方向從A地滾動(dòng)到B地,若AB的長為m,則該圓在滾動(dòng)過程中自轉(zhuǎn)了
m
2πr
m
2πr
圈.(用含的式子表示)
試驗(yàn):
現(xiàn)有兩個(gè)半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運(yùn)動(dòng)的線路也是一個(gè)圓,而這個(gè)圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2沿周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了
R+r
r
R+r
r
圈;

(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動(dòng),動(dòng)時(shí)兩圓保持相內(nèi)切的位置關(guān)系.當(dāng)⊙O1沿⊙O2邊緣滾動(dòng)一圈回到原來的位置時(shí),⊙O1自轉(zhuǎn)了
R-r
r
R-r
r
圈.
解決問題:
如圖4,一個(gè)等邊三角形與它的一邊相切的圓的周長相等,當(dāng)此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動(dòng)滾動(dòng),直至回到原來的位置時(shí),該圓自轉(zhuǎn)了多少圈?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

圓的滾動(dòng)問題探索:
(1)如圖1,一個(gè)半徑為r的圓沿直線方向從A地滾動(dòng)到B地,若AB的長為m,則該圓在滾動(dòng)過程中自轉(zhuǎn)了______圈.(用含的式子表示)
試驗(yàn):
現(xiàn)有兩個(gè)半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運(yùn)動(dòng)的線路也是一個(gè)圓,而這個(gè)圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2沿周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了______圈;
作業(yè)寶
(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動(dòng),動(dòng)時(shí)兩圓保持相內(nèi)切的位置關(guān)系.當(dāng)⊙O1沿⊙O2邊緣滾動(dòng)一圈回到原來的位置時(shí),⊙O1自轉(zhuǎn)了______圈.
解決問題:
如圖4,一個(gè)等邊三角形與它的一邊相切的圓的周長相等,當(dāng)此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動(dòng)滾動(dòng),直至回到原來的位置時(shí),該圓自轉(zhuǎn)了多少圈?請(qǐng)說明理由.作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》好題集(08):3.5 直線和圓的位置關(guān)系(解析版) 題型:選擇題

如圖,等邊三角形ABC中,AD⊥BC于D,△ABD的內(nèi)切⊙O的半徑為R,另有一個(gè)⊙O1與AB,BD,⊙O都相切,其半徑為r1,則⊙O與⊙O1的面積之比為( )

A.1:9
B.9:1
C.8:1
D.與R,r1的取值有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北省廊坊市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

圓的滾動(dòng)問題探索:
(1)如圖1,一個(gè)半徑為r的圓沿直線方向從A地滾動(dòng)到B地,若AB的長為m,則該圓在滾動(dòng)過程中自轉(zhuǎn)了______圈.(用含的式子表示)
試驗(yàn):
現(xiàn)有兩個(gè)半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運(yùn)動(dòng)的線路也是一個(gè)圓,而這個(gè)圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動(dòng),滾動(dòng)時(shí)兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2沿周圍滾動(dòng)一周回到原來的位置時(shí),⊙O1自轉(zhuǎn)了______圈;

(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動(dòng),動(dòng)時(shí)兩圓保持相內(nèi)切的位置關(guān)系.當(dāng)⊙O1沿⊙O2邊緣滾動(dòng)一圈回到原來的位置時(shí),⊙O1自轉(zhuǎn)了______圈.
解決問題:
如圖4,一個(gè)等邊三角形與它的一邊相切的圓的周長相等,當(dāng)此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動(dòng)滾動(dòng),直至回到原來的位置時(shí),該圓自轉(zhuǎn)了多少圈?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案