如圖,一次函數(shù)y=k1x+b與反比例函數(shù)數(shù)學(xué)公式(x>0)的圖象交于A(2,數(shù)學(xué)公式),B(a,3)兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的關(guān)系式;
(2)直接寫出數(shù)學(xué)公式時x的取值范圍.

解:(1)∵把代入y=得:k2=2×=15,
∴反比例函數(shù)的關(guān)系式為y=,
又∵B(a,3)在的圖象上,
∴代入得:a=5.
∴B(5,3),
∵直線y=k1x+b過,B(5,3)兩點(diǎn),
 

∴一次函數(shù)的關(guān)系式為:;

(2)觀察圖象得,x的取值范圍為2<x<5.
分析:(1)把A的坐標(biāo)代入反比例函數(shù)的解析式求出k2,得出反比例函數(shù)的解析式,把B的坐標(biāo)代入求出a,得出B的坐標(biāo),把A、B的坐標(biāo)代入一次函數(shù)的解析式得出方程組,求出方程組的解,即可得出答案;
(2)根據(jù)圖象的特點(diǎn)求出k1x+b>的解集,即可得出答案.
點(diǎn)評:本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,用待定系數(shù)法求出一次函數(shù)與反比例函數(shù)的解析式等知識點(diǎn),題目具有一定的代表性,是一道比較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=
m
x
的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,一次函數(shù)y1=-x-1與反比例函數(shù)y2=-
2
x
圖象相交于點(diǎn)A(-2,1)、B(1,-2),則使y1>y2的x的取值范圍是( 。
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,一次函數(shù)y=kx+b(k<0)的圖象經(jīng)過點(diǎn)A.當(dāng)y<3時,x的取值范圍是
x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都)如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2=
kx
(k為常數(shù),且k≠0)的圖象都經(jīng)過點(diǎn)
A(m,2)
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象直接比較:當(dāng)x>0時,y1和y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x+3的圖象與x軸、y軸分別交于點(diǎn)A、點(diǎn)B,與反比例函數(shù)y=
4x
(x>0)
的圖象交于點(diǎn)C,CD⊥x軸于點(diǎn)D,求四邊形OBCD的面積.

查看答案和解析>>

同步練習(xí)冊答案