年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
x(萬元) | 1 | 2 | 2.5 | 3 | 5 |
yA(萬元) | 0.4 | 0.8 | 1 | 1.2 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某企業(yè)信息部進(jìn)行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨(dú)投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:
x(萬元) | 1 | 2 | 2.5 | 3 | 5 |
yA(萬元) | 0.4 | 0.8 | 1 | 1.2 | 2 |
信息二:如果單獨(dú)投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時(shí)獲利潤2.4萬元,當(dāng)投資4萬元時(shí),可獲利潤3.2萬元.
(1)求出yB與x的函數(shù)關(guān)系式.
(2)從所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式.
(3)如果企業(yè)同時(shí)對A、B兩種產(chǎn)品共投資15萬元,請?jiān)O(shè)計(jì)一個(gè)能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
x(萬元) | 1 | 2 | 2.5 | 3 | 5 |
yA(萬元) | 0.4 | 0.8 | 1 | 1.2 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆河南省周口市初一下學(xué)期坐標(biāo)方法的簡單應(yīng)用專題測驗(yàn) 題型:解答題
某企業(yè)信息部進(jìn)行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨(dú)投資A種產(chǎn)品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:
x(萬元) |
1 |
2 |
2.5 |
3 |
5 |
yA(萬元) |
0.4 |
0.8 |
1 |
1.2 |
2 |
信息二:如果單獨(dú)投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,且投資2萬元時(shí)獲利潤2.4萬元,當(dāng)投資4萬元時(shí),可獲利潤3.2萬元.
(1)求出yB與x的函數(shù)關(guān)系式.
(2)從所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示yA與x之間的關(guān)系,并求出yA與x的函數(shù)關(guān)系式.
(3)如果企業(yè)同時(shí)對A、B兩種產(chǎn)品共投資15萬元,請?jiān)O(shè)計(jì)一個(gè)能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com