如圖(1),在地面A、B兩處測得地面上標桿PQ的仰角分別為30°、45°, 且測得AB=3米,求標桿PQ的長

(2)在數(shù)學學習中要注意基本模型的應用,如圖(2),是測量不可達物體高度的基本模型:在地面A、B兩處測得地面上標桿PQ的仰角分別為,且測得AB=a米。

設PQ=h米,由PA-PB=a可得關于h的方程              ,解得h=

(3)請用上述基本模型解決下列問題:如圖3,斜坡AP的傾斜角為15°,在A處測得Q的仰角為45°,要測量斜坡上標桿PQ的高度,沿著斜坡向上走10米到達B,在B處測得Q的仰角為60°,求標桿PQ的高。(結果可含三角函數(shù))

 

【答案】

 

(1)4.1米

(2)

(3)

【解析】(1)設標桿PQ長為x米,

在RT△PAQ中,AP=, 

在RT△PBQ中,BP==x (1分)

由PA-PB=AB,得,(2分)

解得x=≈ 4.1(3分)

答:標桿PQ的長約為4.1 米

 (2)   (5分)

(3)過點Q作QD⊥AP于點D,  (6分)

∠QAP=30o,∠QBP=45o,AB=10米,由(2)得,QD=      (7分)

在RT△QPD中,∠QPD=75o,PQ=

或PQ=            (8分)

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,王明站在地面B處用測角儀器測得樓頂點E的仰角為45°,樓頂上旗桿頂點F的仰角為55°,已知測角儀器高AB=1.5米,樓高CE=14.5米,求旗桿EF的高度(精確到1米).(供參考數(shù)據(jù):sin55°≈0.8,cos55°≈0.57,tan55°≈1.4.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,小鳥的媽媽在地面D處尋找到食物,準備飛到大樹的頂端B處給非常饑餓的小鳥喂食,途中經過小樹樹頂C處,已知小樹高為4米,大樹與小樹之間的距離為9米,已知tan∠BDA=
43
,問小鳥媽媽從D處飛到B處至少要飛行多少米?(D、C、B三點共線)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(1),在地面A、B兩處測得地面上標桿PQ的仰角分別為30°、45°,且測得AB=3米,求標桿PQ的長
(2)在數(shù)學學習中要注意基本模型的應用,如圖(2),是測量不可達物體高度的基本模型:在地面A、B兩處測得地面上標桿PQ的仰角分別為α、β,且測得AB=a米.
設PQ=h米,由PA-PB=a可得關于h的方程
 
,解得h=
atanβ•tanαtanβ-tanα

(3)請用上述基本模型解決下列問題:如圖3,斜坡AP的傾斜角為15°,在A處測得Q的仰角為45°,要測量斜坡上標桿PQ的高度,沿著斜坡向上走10米到達B,在B處測得Q的仰角為60°,求標桿PQ的高.(結果可含三角函數(shù))
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

 

如圖(1),在地面A、B兩處測得地面上標桿PQ的仰角分別為30°、45°, 且測得AB=3米,求標桿PQ的長

(2)在數(shù)學學習中要注意基本模型的應用,如圖(2),是測量不可達物體高度的基本模型:在地面A、B兩處測得地面上標桿PQ的仰角分別為,且測得AB=a米。

設PQ=h米,由PA-PB=a可得關于h的方程             ,解得h=

(3)請用上述基本模型解決下列問題:如圖3,斜坡AP的傾斜角為15°,在A處測得Q的仰角為45°,要測量斜坡上標桿PQ的高度,沿著斜坡向上走10米到達B,在B處測得Q的仰角為60°,求標桿PQ的高。(結果可含三角函數(shù))

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年安徽省毫州市九年級上學期期末測試數(shù)學試卷(二)(解析版) 題型:解答題

如圖,王明站在地面B處用測角儀器測得樓頂點E的仰角為45°,樓頂上旗桿頂點F的仰角為55°,已知測角儀器高AB=1.5米,樓高CE=14.5米,求旗桿EF的高度(精確到1米).(供參考數(shù)據(jù):sin55°≈0.8,cos55°≈0.57,tan55°≈1.4).

 

查看答案和解析>>

同步練習冊答案