【題目】如圖,已知在⊙O中,AB是弦,半徑OC⊥AB,垂足為點(diǎn)D,要使四邊形OACB為菱形,還需要添加一個(gè)條件,這個(gè)條件可以是(
A.AD=BD
B.OD=CD
C.∠CAD=∠CBD
D.∠OCA=∠OCB

【答案】B
【解析】解:∵在⊙O中,AB是弦,半徑OC⊥AB, ∴AD=DB,
當(dāng)DO=CD,
則AD=BD,DO=CD,AB⊥CO,
故四邊形OACB為菱形.
故選:B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用菱形的判定方法和垂徑定理,掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海中有一個(gè)小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點(diǎn)A測(cè)得小島P在北偏東60°方向上,航行12海里到達(dá)B點(diǎn),這時(shí)測(cè)得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險(xiǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時(shí),求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E,F(xiàn)時(shí),求證:∠DAE=∠BAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)多邊形的內(nèi)角和等于1800°,則這個(gè)多邊形是_____邊形;如果一個(gè)n邊形每一個(gè)內(nèi)角都是135°,則n=_____;如果一個(gè)n邊形每一個(gè)外角都是36°,則n=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長(zhǎng)沙市某家小型“大學(xué)生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬(wàn)件和12.1萬(wàn)件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長(zhǎng)率;
(2)如果平均每人每月最多可投遞0.6萬(wàn)件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年6月份的快遞投遞任務(wù)?如果不能,請(qǐng)問(wèn)至少需要增加幾名業(yè)務(wù)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.
(1)判斷直線CD和⊙O的位置關(guān)系,并說(shuō)明理由.
(2)過(guò)點(diǎn)B作⊙O的切線BE交直線CD于點(diǎn)E,若AC=2,⊙O的半徑是3,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是(
A.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC且DE=OC,連接CE,OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長(zhǎng)為4,∠ABC=60°,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案