A.某中學(xué)師生在勞動(dòng)基地活動(dòng)時(shí),看到木工師傅在材料邊角處畫直角時(shí),用了一種“三弧法”.方法是:
①畫線段AB,分別以A,B為圓心,AB長(zhǎng)為半徑畫弧相交于C;
②以C為圓心,仍以AB長(zhǎng)為半徑畫弧交AC的延長(zhǎng)線于D;
③連接DB.則∠ABD就是直角.
(1)請(qǐng)你就∠ABD是直角作出合理解釋;
(2)現(xiàn)有一長(zhǎng)方形木塊的殘留部分如圖,其中AB,CD整齊且平行,BC,AD是參差不齊的毛邊.請(qǐng)你在毛邊附近用尺規(guī)畫一條與AB,CD都垂直的邊(不寫作法,保留作圖痕跡);

B.如圖,在△ABC中,D為AC上一點(diǎn),CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E為垂足,連接AE.
(1)寫出圖中所有相等的線段,并選擇其中一對(duì)給予證明;
(2)圖中有無相似三角形?若有,請(qǐng)寫出一對(duì);若沒有,請(qǐng)說明理由.

A題解:(1)解法一:由作圖知,AB=BC=CD=AB,∴BC=AD
根據(jù)三角形一邊上的中線等于這邊的一半,
那么這個(gè)三角形是直角三角形,
這條邊所對(duì)的角就是直角,即∠ABD是直角.
解法二:由作圖知,AC=BC=CD=AB,
所以△ABC為等邊三角形.△BCD為等腰三角形,
∠1=∠2=∠3=60°,∠4=∠5,∠3=∠4+∠5=60°,∠5=30°,
∴∠ABD=90度.
(本題說明方法較多,只要合理均可給分)

(2)如圖所示.

B題解:(1)ED=DA,EA=EB=EC.
證明:∵CE⊥BD,∴△CED是Rt△.
∵∠BDC=60°,∴∠ECD=30度.
∴CD=2DE.
∵CD=2DA,∴DE=DA.

(2)有.△ADE∽△AEC.
分析:A(1)在連接BC后,由作圖過程可知,AC=BC=AB=CD所以∠1=∠2,∠4=∠5,又∠1+∠2+∠5+∠4=2(∠2+∠5)=180°所以∠ABD=90°
(2)作圖過程可以參照(1),解釋相同.
B(1)因?yàn)镃E和BD垂直,且∠BDC=60°,所以∠ECD=30°,所以ED=CD,又CD=2DA,所以DE=DA.∠DAE=∠DEA=30°,CE=EA
又∠DAB=45°,∴∠ABD=∠CDB-∠BAD=15°,所以BE=AE.
(2)△ADE∽△AEC,又(1)知,∠EAD=DEA=∠ACE,所以△ADE∽△AEC.
點(diǎn)評(píng):此題考查了直角的作法,以及相似三角形的判定,難易程度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某中學(xué)師生在勞動(dòng)基地活動(dòng)時(shí),看到木工師傅在材料邊角處畫直角時(shí),用了一種“三弧法”.
方法是:
①畫線段AB,分別以A,B為圓心,AB長(zhǎng)為半徑畫弧相交于C;
②以C為圓心,仍以AB長(zhǎng)為半徑畫弧交AC的延長(zhǎng)線于D;
③連接DB.則∠ABD就是直角.請(qǐng)你就∠ABD是直角作出合理解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

A.某中學(xué)師生在勞動(dòng)基地活動(dòng)時(shí),看到木工師傅在材料邊角處畫直角時(shí),用了一種“三弧法”.方法是:
①畫線段AB,分別以A,B為圓心,AB長(zhǎng)為半徑畫弧相交于C;
②以C為圓心,仍以AB長(zhǎng)為半徑畫弧交AC的延長(zhǎng)線于D;
③連接DB.則∠ABD就是直角.
(1)請(qǐng)你就∠ABD是直角作出合理解釋;
(2)現(xiàn)有一長(zhǎng)方形木塊的殘留部分如圖,其中AB,CD整齊且平行,BC,AD是參差不齊的毛邊.請(qǐng)你在毛邊附近用尺規(guī)畫一條與AB,CD都垂直的邊(不寫作法,保留作圖痕跡);
精英家教網(wǎng)
B.如圖,在△ABC中,D為AC上一點(diǎn),CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E為垂足,連接AE.
(1)寫出圖中所有相等的線段,并選擇其中一對(duì)給予證明;
(2)圖中有無相似三角形?若有,請(qǐng)寫出一對(duì);若沒有,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某中學(xué)師生在勞動(dòng)基地活動(dòng)時(shí),看到木工師傅在材料邊角處畫直角時(shí),用了一種“三弧法”.方法是:
①畫線段AB,分別以A,B為圓心,AB長(zhǎng)為半徑畫弧相交于C.
②以C為圓心,仍以AB長(zhǎng)為半徑畫弧交AC的延長(zhǎng)線于D.
③連接DB.
則∠ABD就是直角.
(1)請(qǐng)你就∠ABD是直角作出合理解釋.
(2)現(xiàn)有一長(zhǎng)方形木塊的殘留部分如圖,其中AB,CD整齊且平行,BC,AD是參差不齊的毛邊.請(qǐng)你在毛邊附近用尺規(guī)畫一條與AB,CD都垂直的邊(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)師生在勞動(dòng)基地活動(dòng)時(shí),看到木工師傅在材料邊角處畫直角時(shí),用了一種“三弧法”.方法是:
①畫線段AB,分別以A,B為圓心,AB長(zhǎng)為半徑畫弧相交于C.
②以C為圓心,仍以AB長(zhǎng)為半徑畫弧交AC的延長(zhǎng)線于D.
③連接DB.
則∠ABD就是直角.
(1)請(qǐng)你就∠ABD是直角作出合理解釋.
(2)現(xiàn)有一長(zhǎng)方形木塊的殘留部分如圖,其中AB,CD整齊且平行,BC,AD是參差不齊的毛邊.請(qǐng)你在毛邊附近用尺規(guī)畫一條與AB,CD都垂直的邊(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《圖形的相似》中考題集(17):24.3 相似三角形(解析版) 題型:解答題

A.某中學(xué)師生在勞動(dòng)基地活動(dòng)時(shí),看到木工師傅在材料邊角處畫直角時(shí),用了一種“三弧法”.方法是:
①畫線段AB,分別以A,B為圓心,AB長(zhǎng)為半徑畫弧相交于C;
②以C為圓心,仍以AB長(zhǎng)為半徑畫弧交AC的延長(zhǎng)線于D;
③連接DB.則∠ABD就是直角.
(1)請(qǐng)你就∠ABD是直角作出合理解釋;
(2)現(xiàn)有一長(zhǎng)方形木塊的殘留部分如圖,其中AB,CD整齊且平行,BC,AD是參差不齊的毛邊.請(qǐng)你在毛邊附近用尺規(guī)畫一條與AB,CD都垂直的邊(不寫作法,保留作圖痕跡);

B.如圖,在△ABC中,D為AC上一點(diǎn),CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E為垂足,連接AE.
(1)寫出圖中所有相等的線段,并選擇其中一對(duì)給予證明;
(2)圖中有無相似三角形?若有,請(qǐng)寫出一對(duì);若沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案