如圖,在Rt△ABO中,∠OAB=90°,∠B=45°,OA=6,將△OAB繞點O沿逆時針方向旋轉90°得到△OA1B1,則線段OA1的長與∠AOB1的度數(shù)分別為


  1. A.
    6,90°
  2. B.
    6,45°
  3. C.
    6,135°
  4. D.
    6,150°
C
分析:△OAB是等腰直角三角形,△OAB繞點O沿逆時針方向旋轉90°得到△OA1B1,則△OAB≌△OA1B1,根據(jù)全等三角形的性質(zhì)即可求解.
解答:∵,△OAB繞點O沿逆時針方向旋轉90°得到△OA1B1,
∴△OAB≌△OA1B1,
∴OA1=OA=6;
∵△OAB是等腰直角三角形,
∴∠A1OB=45°
∴∠AOB1=∠BOB1+∠BOA=90+45=135°.
故選:C.
點評:本題主要考查了旋轉的性質(zhì),圖形旋轉前后的兩個圖形全等,正確確定旋轉角是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•峨眉山市二模)如圖,在Rt△ABO中,OB=8,tan∠OBA=
34
.若以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點C在x軸負半軸上,且OB=4OC.若拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求該拋物線的解析式;
(2)設該二次函數(shù)的圖象的頂點為P,求四邊形OAPB的面積;
(3)有兩動點M,N同時從點O出發(fā),其中點M以每秒2個單位長度的速度沿折線OAB按O→A→B的路線運動,點N以每秒4個單位長度的速度沿折線按O→B→A的路線運動,當M、N兩點相遇時,它們都停止運動.設M、N同時從點O出發(fā)t秒時,△OMN的面積為S.
①請求出S關于t的函數(shù)關系式,并寫出自變量t的取值范圍;
②判斷在①的過程中,t為何值時,△OMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•杭州)如圖,在Rt△ABO中,斜邊AB=1.若OC∥BA,∠AOC=36°,則( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABO中,直角邊AO=BO=5.若點A到OC的距離為3,則點B到OC的距離為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABO中,∠OAB=90°,∠B=45°,OA=6,將△OAB繞點O沿逆時針方向旋轉90°得到△OA1B1,則線段OA1的長與∠AOB1的度數(shù)分別為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABO中,OB=8,tan∠OBA=.若以O為坐標原點,OA所在直線為軸,建立如圖所示的平面直角坐標系,點C在軸負半軸上,且OB=4OC.若拋物線經(jīng)過點A、B、C .

1.求該拋物線的解析式

2.設該二次函數(shù)的圖象的頂點為P,求四邊形OAPB的面積

3.有兩動點M,N同時從點O出發(fā),其中點M以每秒2個單位長度的速度沿折線OAB按O→A→B的路線運動,點N以每秒4個單位長度的速度沿折線按O→B→A的路線運動,當M、N兩點相遇時,它們都停止運動.設M、N同時從點O出發(fā)t秒時,△OMN的面積為S .

①請求出S關于t的函數(shù)關系式,并寫出自變量t的取值范圍;

②判斷在①的過程中,t為何值時,△OMN 的面積最大?

 

查看答案和解析>>

同步練習冊答案