【題目】若數(shù)使關(guān)于的分式方程的解為正數(shù),且使關(guān)于的不等式組的解集為.則符合條件的所有整數(shù)的和為( )
A. 8B. 10C. 12D. 16
【答案】B
【解析】
根據(jù)分式方程的解為正數(shù)即可得出a<6且a≠2,根據(jù)不等式組的解集為y<-2,即可得出a≥-2,找出-2≤a<6且a≠2中所有的整數(shù),將其相加即可得出結(jié)論.
解:分式方程的解為x=且x≠1,
∵關(guān)于x的分式方程的解為正數(shù),
∴>0且x≠1,
∴a<6且a≠2.,
解不等式①得:y<-2;
解不等式②得:y≤a.
∵關(guān)于y的不等式組的解集為y<-2,
∴a≥-2.
∴-2≤a<6且a≠2.
∵a為整數(shù),
∴a=-2、-1、0、1、3、4、5,
(-2)+(-1)+0+1+3+4+5=10.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊(duì)有甲、乙兩名射手,他們各自射擊7次,射中靶的環(huán)數(shù)記錄如下:
甲:8,8,8,9,6,8,9
乙:10,7,8,8,5,10,8
(1)分別求出甲、乙兩名射手打靶環(huán)數(shù)的平均數(shù)、眾數(shù)、中位數(shù);
(2)如果要選擇一名成績比較穩(wěn)定的射手,代表射擊隊(duì)參加比賽,應(yīng)如何選擇?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小正方形的邊長均為1的方格紙中,有線段和線段,點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫出以為斜邊的直角三角形,點(diǎn)E在小正方形的頂點(diǎn)上,且的面積為5;
(2)在方格紙中畫出以為一邊的,點(diǎn)在小正方形的頂點(diǎn)上,的面積為4,射線與射線交于點(diǎn),且,連接,請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)平面內(nèi),直線y=-x+5與 軸和 軸分別交于A、B兩點(diǎn),二次函數(shù)y= +bx+c的圖象經(jīng)過點(diǎn)A、B,且頂點(diǎn)為C.
(1)求這個(gè)二次函數(shù)的解析式;
(2)求sin∠OCA的值;
(3)若P是這個(gè)二次函數(shù)圖象上位于x軸下方的一點(diǎn),且 ABP的面積為10,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支儀仗隊(duì)各10名隊(duì)員的身高(單位:cm)如下表:
甲隊(duì) | 179 | 177 | 178 | 177 | 178 | 178 | 179 | 179 | 177 | 178 |
乙隊(duì) | 178 | 178 | 176 | 180 | 180 | 178 | 176 | 179 | 177 | 178 |
(1)甲隊(duì)隊(duì)員的平均身高為cm,乙隊(duì)隊(duì)員的平均身高為cm;
(2)請用你學(xué)過的統(tǒng)計(jì)知識判斷哪支儀仗隊(duì)的身高更為整齊呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,0),B(-4,4),C(3,-3).
(1)畫出△ABC;
(2)畫出△ABC向右平移3個(gè)單位長度,再向上平移4個(gè)單位長度后得到的△A1B1C1;
(3)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,其中A(,),B(,),C(,),將這個(gè)正方形向左平移3個(gè)單位長度,再向上平移1個(gè)單位長度,得正方形.
(1)畫出平移后的正方形;
(2)寫出點(diǎn)D和點(diǎn)D′ 的坐標(biāo);
(3)寫出線段與的位置和大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com