【題目】如圖,一架無人機在距離地面高度為13.3米的點A處,測得地面點M的俯角為53°,這架無人機沿仰角為35°的方向飛行了55米到達點B,恰好在地面點N的正上方,M、N在同一水平線上求出MN兩點之間的距離.(結果精確到1米)

(參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57cos35°≈0.82,tan35°≈0.70.)

【答案】35米

【解析】

過點AACBNC.過點MMDACD,在RtAMD中,通過解直角三角形可求出AD的長,在RtABC中,通過解直角三角形可求出AC的長,由ACBN,MDACMNBN可得出四邊形MDCN是矩形,再利用矩形的性質即可求出MN的長,此題得解.

過點AACBNC.過點MMDACD,如圖所示.

RtAMD中,DM=13.3,∠DAM=53°,

AD10;

RtABC中,AB=55,∠BAC=35°,

AC=ABcos53°=55×0.82=45.1

ACBNMDAC,MNBN

∴四邊形MDCN是矩形,

MN=DC=ACAD≈35

答:MN兩點的距離約是35米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yk1xb的圖象與反比例函數(shù)y (x<0)的圖象相交于點A(-1,2)、點B(-4,n).

(1)求此一次函數(shù)和反比例函數(shù)的表達式;

(2)AOB的面積;

(3)x軸上存在一點P,使PAB的周長最小,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】被歷代數(shù)學家尊為算經(jīng)之首的《九章算術》是中國古代算法的扛鼎之作.《九章算術》中記載:今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?譯文:今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問雀、燕毎只各重多少斤?設每只雀重x斤,每只燕重y斤,可列方程組為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄭州市創(chuàng)建國家生態(tài)園林城市實施方案已經(jīng)出臺,到20195月底,市區(qū)主城區(qū)要達到或超過《國家生態(tài)園林城市標準》各項指標要求.鄭州市林蔭路推廣率要超過85%,在推進此活動中,鄭州市某小區(qū)決定購買AB兩種喬木樹,經(jīng)過調查,獲取信息如下:如果購買A種樹木40棵,B種樹木60棵,需付款11400元;如果購買A種樹木50棵,B種樹木50棵,需付款10500元.

樹種

購買數(shù)量低于50

購買數(shù)量不低于50

A

原價銷售

以八折銷售

B

原價銷售

以九折銷售

1A種樹木與B種樹木的單價各多少元?

2)經(jīng)過測算,需要購置AB兩種樹木共100棵,其中B種樹木的數(shù)量不多于A種樹木的三分之一,如何購買付款最少?最少費用是多少元?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點CAB的延長線上,AD平分∠CAE⊙O于點D,且AE⊥CD,垂足為點E

1)求證:直線CE⊙O的切線.

2)若BC=3,CD=3,求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,無人飛機從A點水平飛行10秒至B點,在地面上C處測得A點、B點的仰角分別為45°,75°,已知無人飛機的飛行速度為80/秒,則這架無人飛機的飛行高度為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+4x軸交于點A(﹣1,0)、B3,0),與y軸交于點C

1)求拋物線的解析式;

2)如圖1,D為拋物線對稱軸上一動點,求D運動到什么位置時DAC的周長最。

3)如圖2,點E在第一象限拋物線上,AEBC交于點F,若AFFE21,求E點坐標;

4)點MN同時從B點出發(fā),分別沿BABC方向運動,它們的運動速度都是1個單位/秒,當點M運動到點A時,點N停止運動,則當點N停止運動后,在x軸上是否存在點P,使得PBN是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,校園內有一棵與地面垂直的樹,數(shù)學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺機器所需要的時間與原計劃生產(chǎn)450臺機器所需要的時間相同.

(1)原計劃平均每天生產(chǎn)多少臺機器?

(2)若該工廠要在不超過5天的時間,生產(chǎn)1100臺機器,則平均每天至少還要再多生產(chǎn)多少臺機器?

查看答案和解析>>

同步練習冊答案