如圖,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面積為             。
96
根據(jù)菱形的性質(zhì)利用勾股定理求得OB的長,從而得到BD的長,再根據(jù)菱形的面積公式即可求得其面積.
解:∵在菱形ABCD中,AB=10,AC=16
∴OB===6
∴BD=2×6=12
∴菱形ABCD的面積=×兩條對角線的乘積=×16×12=96.
故答案為96.
此題考查學(xué)生對菱形的性質(zhì)及勾股定理的理解及運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

梯形的高為4厘米,中位線長為5厘米,則梯形的面積為        平方厘米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•廣元)如圖,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分別為AB、BC的中點(diǎn).
(1)求證:四邊形AFCD是矩形;
(2)求證:DE⊥EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(9分)已知,,(如圖).是射線上的動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),是線段的中點(diǎn).
(1)設(shè)的面積為,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)如果以線段為直徑的圓與以線段直徑的圓外切,求線段的長;
(3)連結(jié),交線段于點(diǎn),如果以為頂點(diǎn)的三角形與相似,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(11·貴港)如圖所示,在矩形ABCD中,AB=,BC=2,對角線AC、BD
相交于點(diǎn)O,過點(diǎn)O作OE垂直AC交AD于點(diǎn)E,則AE的長是
A.   B.   C.1         D.1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖4,菱形ABCD的對角線長分別為,以菱形ABCD各邊的中點(diǎn)為頂點(diǎn)作矩形A1B1C1D1,然后再以矩形A1B1C1D1的中點(diǎn)為頂點(diǎn)作菱形A2B2C2D2,……,如此下去,得到四邊形A2011B2011C2011D2011的面積用含的代數(shù)式表示為
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將邊長為6cm的正六邊形紙板的六個(gè)角各剪切去一個(gè)全等的四邊形,再
沿虛線折起,做成一個(gè)無蓋直六棱柱紙盒,使側(cè)面積等于底面積,被剪去的六個(gè)四邊形的面
積和為           cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•寧夏)等腰梯形的上底是2cm,腰長是4cm,一個(gè)底角是60°,則等腰梯形的下底是( 。
A.5cmB.6cm
C.7cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(11·天水)如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對角線
AC平分∠BAD,點(diǎn)E在AB上,且AE=2(AE<AD),點(diǎn)P是AC上的動(dòng)點(diǎn),則PE+PB
的最小值是_  ▲  

查看答案和解析>>

同步練習(xí)冊答案