【題目】補全解答過程:
已知:如圖,直線,直線與直線,分別交于點,;平分,.求的度數(shù).
解:與交于點,(已知)
.(_______________)
,(已知)
.(______________)
,與,交于點,,(已知)
(_____________)
_______
平分,(已知)
_______.(角平分線的定義)
【答案】對頂角相等,等量代換,兩直線平行,同旁內(nèi)角互補,120°,60.
【解析】
依據(jù)對頂角相等以及平行線的性質(zhì),即可得到∠4=60°,∠FGB=120°,再根據(jù)角平分線的定義,即可得出∠1=60°.
解:∵EF與CD交于點H,(已知)
∴∠3=∠4.(對頂角相等)
∵∠3=60°,(已知)
∴∠4=60°.(等量代換)
∵AB∥CD,EF與AB,CD交于點G,H,(已知)
∴∠4+∠FGB=180°.(兩直線平行,同旁內(nèi)角互補)
∴∠FGB=120°.
∵GM平分∠FGB,(已知)
∴∠1=60°.(角平分線的定義)
故答案為:對頂角相等,等量代換,兩直線平行,同旁內(nèi)角互補,120°,60.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,完成下列說理過程
如圖,點A,O,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)如果∠COD=65°,求∠AOE的度數(shù).
解:(1)如圖,因為OD是∠AOC的平分線,
所以∠COD =∠AOC.
因為OE是∠BOC 的平分線,
所以 =∠BOC.
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB= °.
(2)由(1)可知∠BOE=∠COE = -∠COD= °.
所以∠AOE= -∠BOE = °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標(biāo)號為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于點P(a,b),點Q(c,d),如果a﹣b=c﹣d,那么點P與點Q就叫作等差點.例如:點P(4,2),點Q(﹣1,﹣3),因4﹣2=1﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H(2,3),點N(﹣2,﹣3),MN⊥y軸,HM⊥x軸,點P是直線y=x+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,則∠BQC=_________.(用α,β表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,平分,平分.
(1)若,則的度數(shù)為______;
(2)若,直線經(jīng)過點.
①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);
②如圖3,若繞點旋轉(zhuǎn),分別交線段于點,試問在旋轉(zhuǎn)過程中的度數(shù)是否會發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請說明理由:
③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點,與的延長線交于點,請直接寫出與的關(guān)系(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是菱形,在平面直角坐標(biāo)系中的位置如圖,邊AD經(jīng)過原點O,已知A(0,﹣3),B(4,0),反比例函數(shù)圖象經(jīng)過點C,直線AC交雙曲線另一支于點E,連接DE,CD,設(shè)反比例函數(shù)解析式為y1= ,直線AC解析式為y2=ax+b.
(1)求反比例函數(shù)解析式;
(2)當(dāng)y1<y2時,求x的取值范圍;
(3)求△CDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com