小明和他的同學(xué)在太陽下行走,小明身高1.4米,他的影長為1.75米,他同學(xué)的身高為1.6米,則此時(shí)他的同學(xué)的影長為       米。
2
解:設(shè)他的同學(xué)的影長為xm,
∵同一時(shí)刻物高與影長成正比例,
,
解得:x=2,
∴他的同學(xué)的影長為2m。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在4×4的正方形方格中,△ABC和△DEF的頂點(diǎn)都在邊長為1的小正方形的頂點(diǎn)上.

(1)填空:∠ABC=       °,BC=         ;
(2)判斷△ABC與△DEF是否相似,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)(3分)如圖①,在Rt△ABC中,∠ABC=90°,BD⊥AC于點(diǎn)D.
求證:AB2=AD·AC;
(2)(4分)如圖②,在Rt△ABC中,∠ABC=90°,點(diǎn)D為BC邊上的點(diǎn),BE⊥AD于點(diǎn)E,延長BE交AC
于點(diǎn)F.,求的值;
(3)(5分) 在Rt△ABC中,∠ABC=90°,點(diǎn)D為直線BC上的動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),直線BE⊥AD
于點(diǎn)E,交直線AC于點(diǎn)F。若,請?zhí)骄坎⒅苯訉懗?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823015748645501.png" style="vertical-align:middle;" />的所有可能的值(用含n的式子表
示),不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖,△ABC內(nèi)接于⊙O,且AB=AC,⊙O的弦AE交
于BC于D. 求證:AB.AC=AD.AE

(2)在(1)的條件下當(dāng)弦AE的延長線與BC的延長線相交于點(diǎn)D時(shí),上述結(jié)論是
否還成立?若成立,請給予證明。若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,D是等邊△ABC的邊BC上一動(dòng)點(diǎn),ED//AC交AB于點(diǎn)E.DF⊥AC交AC于點(diǎn)F,DF=,若△DCF與E、F、D三點(diǎn)組成的三角形相似,則BD的長等于_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是(   )。
(1)所有的等腰三角形都相似                (2)所有的等腰直角三角形都相似
(3)有一個(gè)角相等的兩個(gè)等腰三角形相似      (4)頂角相等的兩個(gè)等腰三角形相似
A.(1)(2)B.(2)(4)C.(1)(3)D.(3)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

“差之毫厘,失之千里”是一句描述開始時(shí)雖然相差很微小,結(jié)果會(huì)造成很大的誤差或錯(cuò)誤的成語.現(xiàn)實(shí)中就有這樣的實(shí)例,如步槍在瞄準(zhǔn)時(shí)的示意圖如圖,從眼睛到準(zhǔn)星的距離OE為80cm,眼睛距離目標(biāo)為200m,步槍上準(zhǔn)星寬度AB為2mm,若射擊時(shí),由于抖動(dòng)導(dǎo)致視線偏離了準(zhǔn)星1mm,則目標(biāo)偏離的距離為(    )cm.
A.25B.50C.75D.100

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示:直線MN⊥RS于點(diǎn)O,點(diǎn)B在射線OS上,OB=2,點(diǎn)C在射線ON上,OC=2,點(diǎn)E是射線OM上一動(dòng)點(diǎn),連結(jié)EB,過O作OP⊥EB于P,連結(jié)CP,過P作PF⊥PC交射線OS于F。
(1)求證:△POC∽△PBF。
(2)當(dāng)OE=1,OE=2時(shí), BF的長分別為多少?當(dāng)OE=n時(shí),BF=_______.
(3)當(dāng)OE=1時(shí),;OE=2時(shí), ;…,OE=n時(shí),.則=_______.(直接寫出答案)

備用圖

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中, BE⊥AC于E,AD⊥BC于D.求證:△CDE∽ △CAB
  

查看答案和解析>>

同步練習(xí)冊答案