【題目】如圖,四邊形是的內(nèi)接矩形,如果的高線長,底邊長,設(shè),,
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)為何值時, 四邊形的面積最大?最大面積是多少?
【答案】(1)y=8-x;(2)當(dāng)x=5時,四邊形DEFG面積最大,最大面積是20.
【解析】
試題分析:(1)設(shè)DE=y,則MH=y,AM=AH-MH=8-y,因為DG∥BC,可證△ADG∽△ABC,根據(jù)相似三角形對應(yīng)邊上高的比等于相似比,建立等式;
(2)設(shè)四邊形DEFG的面積為S,則S=DE×DG=xy=x(8-x),運用二次函數(shù)性質(zhì)解決問題.
試題解析:(1)設(shè)AH與DG交于點M,則AM=AH-MH=8-y,
∵DG∥BC,∴△ADG∽△ABC,
∴,即,
整理,得y=8-x;
(2)設(shè)四邊形DEFG的面積為S,則S=DE×DG=xy=x(8-x)=-x2+8x,
當(dāng)x=-=5時,S=-×25+8×5=20,
所以當(dāng)x=5時,四邊形DEFG面積最大,最大面積是20.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進一種單價為元的籃球,如果以單價元售出,那么每天可售出50個.根據(jù)銷售經(jīng)驗,售價每提高元.銷售量相應(yīng)減少1個。
(1)假設(shè)銷售單價提高元,那么銷售每個籃球所獲得的利潤是_____元;這種籃球每天的銷售量是_________個。
(2)假設(shè)每天銷售這種籃球所得利潤為y ,請用含的代數(shù)式表示y。
(3)假如你是商場老板,為了在出售這種籃球時獲得最大利潤,你該提高多少元?最大利潤是多少?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點E,交CB于點F。
(1)求證:CE=CF。
(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從百貨大樓出發(fā)負責(zé)送貨,向東走了4千米到達小明家,繼續(xù)向東走了1.5千米到達小紅家,然后向西走了8.5千米到達小剛家,最后返回百貨大樓.
(1)以百貨大樓為原點,向東為正方向,1個單位長度表示1千米,請你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置.(小明家用點A表示,小紅家用點B表示,小剛家用點C表示)
(2)小明家與小剛家相距多遠?
(3)若貨車每千米耗油1.5升,那么這輛貨車此次送貨共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從一個半徑為1的圓形鐵皮中剪下一個圓心角為90°的扇形BAC.
(1)求這個扇形的面積;
(2)若將扇形BAC圍成一個圓錐的側(cè)面,這個圓錐的底面直徑是多少?能否從最大的余料③中剪出一個圓做該圓錐的底面?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金瑞公司決定從廠家購進甲、乙兩種不同型號的顯示器共50臺,購進顯示器的總金額不超過77000元,已知甲、乙型號的顯示器價格分別為1000元/臺、2000元/臺.
(1)求金瑞公司至少購進甲型顯示器多少臺?
(2)若甲型顯示器的臺數(shù)不超過乙型顯示器的臺數(shù),則有哪些購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文藝團體為“希望工程”募捐組織了一場義演,共售出1000張票,籌出票款6920元,且每張成人票8元,學(xué)生票5元.
(1)問成人票與學(xué)生票各售出多少張?
(2)若票價不變,仍售出1000張票,所得的票款可能是7290元嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個正多邊形的一個外角為30°,那么這個正多邊形的邊數(shù)是( )
A. 6 B. 11 C. 12 D. 18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖形:①線段;②等邊三角形;③矩形;④菱形;⑤平行四邊形中,既是軸對稱圖形又是中心對稱圖形的個數(shù)是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com