【題目】如圖,已知直線y=kx+b與坐標軸分別交于點A(0,8)、B(8,0),動點 C從原點O出發(fā)沿OA方向以每秒1個單位長度向點A運動,動點D從點B出發(fā)沿BO方向以每秒1個單位長度向點O運動,動點C、D同時出發(fā),當動點D到達原點O時,點C、D停止運動,設運動時間為t 秒.

(1)直接寫出直線的解析式:;
(2)若E點的坐標為(﹣2,0),當△OCE的面積為5 時.
①求t的值;
②探索:在y軸上是否存在點P,使△PCD的面積等于△CED的面積?若存在,請求出P點的坐標;若不存在,請說明理由.

【答案】
(1)y=﹣x+8
(2)

解:①由已知得:點C(0,t)(0≤t≤8),點E(﹣2,0),

∴OC=t,OE=2.

∵SOCE= OEOC= ×2t=5,

∴t=5.

②假設存在,設點P的坐標為(0,m),如圖所示.

由①可知t=5,此時點C(0,5),點D(3,0),

∴OC=5,DE=5,OD=3.

SDCE= OCDE= ×5×5= ,SDCP= ODPC= ×3×|m﹣5|.

∵SDCE=SDCP

= ×3×|m﹣5|,即3|m﹣5|=25,

解得:m=﹣

故當△OCE的面積為5時,在y 軸存在點P,使△PCD的面積等于△CED的面積,點P的坐標為(0,﹣ )或(0, ).


【解析】解:(1)將點A(0,8)、B(8,0)代入y=kx+b中,
得: ,解得: ,
∴該直線的解析式為y=﹣x+8.
所以答案是:y=﹣x+8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DB∥AC,且DB= AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多多班長統(tǒng)計去年1~8月“書香校園”活動中全班同學的課外閱讀數(shù)量(單位:本),繪制了如圖折線統(tǒng)計圖,下列說法正確的是(
A.極差是47
B.眾數(shù)是42
C.中位數(shù)是58
D.每月閱讀數(shù)量超過40的有4個月

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請用直尺和圓規(guī)在所給的兩個矩形中各作一個不為正方形的菱形,且菱形的四個頂點都在矩形的邊上,面積相同的圖形視為同一種.(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級體育模擬測試中,六名男生引體向上的成績如下(單位:個):10、6、9、11、8、10,下列關于這組數(shù)據(jù)描述正確的是( )
A.極差是6
B.眾數(shù)是10
C.平均數(shù)是9.5
D.方差是16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中一次函數(shù) 的圖象分別交x、y軸于點A、B,與一次函數(shù)y=x的圖象交于第一象限內的點C.

(1)分別求出A、B、C、的坐標;
(2)求出△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014年12月28日“青煙威榮”城際鐵路正式開通,從煙臺到北京的高鐵里程比普快里程縮短了81千米,運行時間減少了9小時,已知煙臺到北京的普快列車里程約為1026千米,高鐵平均時速為普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王老師要去距離煙臺大約630千米的某市參加14:00召開的會議,如果他買到當日8:40從煙臺至城市的高鐵票,而且從該市火車站到會議地點最多需要1.5小時,試問在高鐵列車準點到達的情況下他能在開會之前到達嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=9,BC=12,則點C到AB的距離是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點D是AC的中點,過點A,D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)若∠A+∠CDB=90°,求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.

查看答案和解析>>

同步練習冊答案