【題目】如圖,在平面直角坐標系中一次函數(shù) 的圖象分別交x、y軸于點A、B,與一次函數(shù)y=x的圖象交于第一象限內的點C.

(1)分別求出A、B、C、的坐標;
(2)求出△AOC的面積.

【答案】
(1)

解:根據(jù)題意,令x=0,解得y=6,

∴B點的坐標為(0,6);

令y=0,解得x=12,

∴A點的坐標為(12,0);

∵一次函數(shù) 的圖象與一次函數(shù)y=x交于C,

解得:y=x=4,

∴C點的坐標為(4,4)


(2)

解:由(1)知,OA=12,以AO為底,△AOC的高為4.

由圖象知SAOC= ×12×4=24


【解析】(1)分別令x,y為0,即可解得B、A兩點坐標,再解方程組,即可解得C點的坐標;(2)根據(jù)三角形的面積公式求解即可.
【考點精析】掌握三角形的面積是解答本題的根本,需要知道三角形的面積=1/2×底×高.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD,點E是BC邊的中點,DE與AC相交于點F,連接BF,下列結論:①SABF=SADF;②SCDF=4SCEF;③SADF=2SCEF;④SADF=2SCDF , 其中正確的是(
A.①③
B.②③
C.①④
D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則 的值為; 的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=4,AD=2,點P是邊AB上的一個動點(不與點A、點B重合),點Q在邊AD上,將△CBP和△QAP分別沿PC、PQ折疊,使B點與E點重合,A點與F點重合,且P、E、F三點共線.

(1)若點E平分線段PF,則此時AQ的長為多少?
(2)若線段CE與線段QF所在的平行直線之間的距離為2,則此時AP的長為多少?
(3)在“線段CE”、“線段QF”、“點A”這三者中,是否存在兩個在同一條直線上的情況?若存在,求出此時AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=kx+b與坐標軸分別交于點A(0,8)、B(8,0),動點 C從原點O出發(fā)沿OA方向以每秒1個單位長度向點A運動,動點D從點B出發(fā)沿BO方向以每秒1個單位長度向點O運動,動點C、D同時出發(fā),當動點D到達原點O時,點C、D停止運動,設運動時間為t 秒.

(1)直接寫出直線的解析式:;
(2)若E點的坐標為(﹣2,0),當△OCE的面積為5 時.
①求t的值;
②探索:在y軸上是否存在點P,使△PCD的面積等于△CED的面積?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB.證明:

(1)AE=DC;
(2)四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一條長為40cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.
(1)要使這兩個正方形的面積之和等于52cm2 , 那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為了了解員工每人所創(chuàng)年利潤情況,公司從各部抽取部分員工對每年所創(chuàng)年利潤情況進行統(tǒng)計,并繪制如圖1,圖2統(tǒng)計圖.

(1)將圖補充完整;
(2)本次共抽取員工人,每人所創(chuàng)年利潤的眾數(shù)是 , 平均數(shù)是;
(3)若每人創(chuàng)造年利潤10萬元及(含10萬元)以上位優(yōu)秀員工,在公司1200員工中有多少可以評為優(yōu)秀員工?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,圓心角∠AOB=120°,弦AB=2 cm,則OA=cm.

查看答案和解析>>

同步練習冊答案