如圖,點O是⊙O的圓心,點A、B、C在⊙O上,∠ACB=30°,弦AB=3cm,則△ABO的周長是
9
9
cm.
分析:由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,∠AOB的度數(shù),又由OA=OB,即可得△ABO是等邊三角形,繼而求得答案.
解答:解:∵點O是⊙O的圓心,點A、B、C在⊙O上,∠ACB=30°,
∴∠AOB=2∠ACB=60°,
∵OA=OB,
∴△ABO是等邊三角形,
∵AB=3cm,
∴△ABO的周長是:9cm.
故答案為:9.
點評:此題考查了圓周角定理以及等邊三角形的判定與性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,點I是△ABC的內心,AI的延長線交邊BC于點D,交△ABC外接圓OO于點E,連接BE、CE.
(1)若AB=2CE,AD=6,求CD的長;
(2)求證:C、I兩個點在以點E為圓心,EB為半徑的圓上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

39、如圖,點O是∠EPF的平分線上的一點,以O為圓心的圓和角的兩邊分別交于點A,B和C,D,
(1)AB和CD相等嗎?為什么?
(2)若角的頂點P在圓上,或在圓內,本題的結論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樊城區(qū)模擬)已知Rt△ABC中,∠ABC=90°,點O是BC上一動點,以O為圓心,OB為半徑作圓.
(1)如圖①若點O是BC的中點,⊙O與AC相交于點D,E為AB的中點,試判斷DE與⊙O的位置關系,并證明.
(2)在(1)的條件下,將Rt△ABC沿BC所在的直線向右平移,使點B與圓心O重合,如圖②,若⊙O與AC相切于點D,求AD:CD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•道外區(qū)三模)如圖,點l是△ABC的內心,線段AI的延長線交△ABC外切圓于點D,交BC邊于點E.
(1)求證:lD=BD.
(2)若
BE
AB
=
2
3
,lE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點O是∠EPF的平分線上的一點,以O為圓心的圓和角的兩邊分別交于點A,B和C,D.求證:AB=CD.

查看答案和解析>>

同步練習冊答案