如圖,在Rt△ABC中,AC=AB,∠BAC=90°,點(diǎn)O是BC的中點(diǎn),連結(jié)OA.
(1)如圖1,已知BC=6,則OA=_________.
(2)如圖2,若點(diǎn)M,N分別在線段AB,AC上移動(dòng),在移動(dòng)中始終保持AN=BM,則△OAN≌△OBM成立嗎?并說(shuō)明理由.
(3)如圖3,若點(diǎn)M,N分別在線段BA.AC的延長(zhǎng)線上移動(dòng),在移動(dòng)中始終保持AN=BM,請(qǐng)判斷△OMN的形狀,并說(shuō)明理由.
(1)
(2)△OAN≌△OBM
理由如下:∵AC=AB,∠BAC=90°
∴∠B=45°
∵點(diǎn)O是BC的中點(diǎn)
∴∠NAO=45°
∴∠B=∠NAO
∵∠BAC=90°,點(diǎn)O是BC的中點(diǎn)
∴
又∵AN=BM,
∴△OAN≌△OBM
(3)△OMN是等腰直角三角形
理由如下:∵AC=AB,AN=BM
∴NC=MA
∵∠BAO=∠ACO=45°
∴∠MAO=135°=∠NCO
又∵AO=CO
∴△OAM≌△OCN
∴MO="NO," ∠MOA=∠NOC
∵AB=AC,點(diǎn)O是BC的中點(diǎn)
∴∠AOC=90°
∴∠MOA+∠MOC=90°
∴∠NOC+∠MOC=90°
∴△OMN是等腰直角三角形
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com