8.國(guó)務(wù)院辦公廳2015年3月16日發(fā)布了《中國(guó)足球改革的總體方案》,這是中國(guó)足球歷史上的重大改革.為了進(jìn)一步普及足球知識(shí),傳播足球文化,我市舉行了“足球進(jìn)校園”知識(shí)競(jìng)賽活動(dòng),為了解足球知識(shí)的普及情況,隨機(jī)抽取了部分獲獎(jiǎng)情況進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
 獲獎(jiǎng)等次 頻數(shù) 頻率
 一等獎(jiǎng) 10 0.05
 二等獎(jiǎng) 20 0.10
三等獎(jiǎng) 30 b
 優(yōu)勝獎(jiǎng) a 0.30
 鼓勵(lì)獎(jiǎng) 80 0.40
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a=60,b=0.15,且補(bǔ)全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計(jì)圖來(lái)描述獲獎(jiǎng)分布情況,問(wèn)獲得優(yōu)勝獎(jiǎng)對(duì)應(yīng)的扇形圓心角的度數(shù)是多少?
(3)在這次競(jìng)賽中,甲、乙、丙、丁四位同學(xué)都獲得一等獎(jiǎng),若從這四位同學(xué)中隨機(jī)選取兩位同學(xué)代表我市參加上一級(jí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表的方法,計(jì)算恰好選中甲、乙二人的概率.

分析 (1)根據(jù)公式頻率=頻數(shù)÷樣本總數(shù),求得樣本總數(shù),再根據(jù)公式得出a,b的值即可;
(2)根據(jù)公式優(yōu)勝獎(jiǎng)對(duì)應(yīng)的扇形圓心角的度數(shù)=優(yōu)勝獎(jiǎng)的頻率×360°計(jì)算即可;
(3)畫(huà)樹(shù)狀圖或列表將所有等可能的結(jié)果列舉出來(lái),利用概率公式求解即可.

解答 解:(1)樣本總數(shù)為10÷0.05=200人,
a=200-10-20-30-80=60人,
b=30÷200=0.15,
故答案為60,0.15;
(2)優(yōu)勝獎(jiǎng)所在扇形的圓心角為0.30×360°=108°;
(3)列表:甲乙丙丁分別用ABCD表示,

ABCD
AABACAD
BBABCBD
CCACBCD
DDADBDC
∵共有12種等可能的結(jié)果,恰好選中A、B的有2種,
畫(huà)樹(shù)狀圖如下:

∴P(選中A、B)=$\frac{2}{12}$=$\frac{1}{6}$.

點(diǎn)評(píng) 本題考查了列表與樹(shù)狀圖的知識(shí),解題的關(guān)鍵是通過(guò)列表將所有等可能的結(jié)果列舉出來(lái),然后利用概率公式求解,難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為A(2,0),且與y軸交于點(diǎn)(0,1),B點(diǎn)坐標(biāo)為(2,2),點(diǎn)C為拋物線上一動(dòng)點(diǎn),以C為圓心,BC為半徑的圓交x軸于M、N兩點(diǎn)(M在N的左側(cè)).

(1)求此二次函數(shù)的表達(dá)式;
(2)當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),求此時(shí)點(diǎn)M、N的坐標(biāo);
(3)當(dāng)點(diǎn)C在拋物線上運(yùn)動(dòng)時(shí),弦MN的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不發(fā)生變化,求出弦MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在平面直角坐標(biāo)系中,把△ABC經(jīng)過(guò)平移得到△A′B′C′,若A(1,m),B(4,2),點(diǎn)A的對(duì)應(yīng)點(diǎn)A′(3,m+2),則點(diǎn)B對(duì)應(yīng)點(diǎn)B′的標(biāo)為( 。
A.(6,5)B.(6,4)C.(5,m)D.(6,m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,用一個(gè)半徑為5cm的定滑輪帶動(dòng)重物上升,滑輪上一點(diǎn)A旋轉(zhuǎn)了108°,假設(shè)繩索(粗細(xì)不計(jì))與滑輪之間沒(méi)有滑動(dòng),則重物上升了(  )
A.πcmB.2πcmC.3πcmD.5πcm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.閱讀理解:
我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把$\frac{1}{sinα}$的值叫做這個(gè)平行四邊形的變形度.
(1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形度是$\frac{2\sqrt{3}}{3}$.
猜想證明:
(2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2,$\frac{1}{sinα}$之間的數(shù)量關(guān)系,并說(shuō)明理由;
拓展探究:
(3)如圖2,在矩形ABCD中,E是AD邊上的一點(diǎn),且AB2=AE•AD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對(duì)應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為4$\sqrt{m}$(m>0),平行四邊形A1B1C1D1的面積為2$\sqrt{m}$(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.閱讀下列材料:
  北京市正圍繞著“政治中心、文化中心、國(guó)際交往中心、科技創(chuàng)新中心”的定位,深入實(shí)施“人文北京、科技北京、綠色北京”的發(fā)展戰(zhàn)略.“十二五”期間,北京市文化創(chuàng)意產(chǎn)業(yè)展現(xiàn)了良好的發(fā)展基礎(chǔ)和巨大的發(fā)展?jié)摿,已?jīng)成為首都經(jīng)濟(jì)增長(zhǎng)的支柱產(chǎn)業(yè).
  2011年,北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值1938.6億元,占地區(qū)生產(chǎn)總值的12.2%.2012年,北京市文化創(chuàng)意產(chǎn)業(yè)繼續(xù)呈現(xiàn)平穩(wěn)發(fā)展態(tài)勢(shì),實(shí)現(xiàn)產(chǎn)業(yè)增加值2189.2億元,占地區(qū)生產(chǎn)總值的12.3%,是第三產(chǎn)業(yè)中僅次于金融業(yè)、批發(fā)和零售業(yè)的第三大支柱產(chǎn)業(yè).2013年,北京市文化產(chǎn)業(yè)實(shí)現(xiàn)增加值2406.7億元,比上年增長(zhǎng)9.1%,文化創(chuàng)意產(chǎn)業(yè)作為北京市支柱產(chǎn)業(yè)已經(jīng)排到了第二位.2014年,北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值2749.3億元,占地區(qū)生產(chǎn)總值的13.1%,創(chuàng)歷史新高,2015年,北京市文化創(chuàng)意產(chǎn)業(yè)發(fā)展總體平穩(wěn),實(shí)現(xiàn)產(chǎn)業(yè)增加值3072.3億元,占地區(qū)生產(chǎn)總值的13.4%.
根據(jù)以上材料解答下列問(wèn)題:
(1)用折線圖將2011-2015年北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值表示出來(lái),并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)繪制的折線圖中提供的信息,預(yù)估2016年北京市文化創(chuàng)意產(chǎn)業(yè)實(shí)現(xiàn)增加值約3471.7億元,你的預(yù)估理由用近3年的平均增長(zhǎng)率估計(jì)2016年的增長(zhǎng)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知A(0,3),B(2,3)是拋物線y=-x2+bx+c上兩點(diǎn),該拋物線的頂點(diǎn)坐標(biāo)是(1,4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,AB∥CD,AE平分∠CAB交CD于點(diǎn)E,若∠C=50°,則∠AED=( 。
A.65°B.115°C.125°D.130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.計(jì)算:(π-3.14)0+|$\sqrt{2}$-1|-($\frac{\sqrt{2}}{2}$)-1-2sin45°+(-1)2016

查看答案和解析>>

同步練習(xí)冊(cè)答案