【題目】如圖,矩形ABCD的面積為1cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B…;依此類推,則平行四邊形AO2016C2017B的面積為_____

【答案】

【解析】

矩形ABCD的面積=AB×AD=1,過點OAB作垂線,垂足為E,平行四邊形AOC1B的面積=AB×OE,根據(jù)矩形的性質(zhì),OE=AD,即平行四邊形AOC1B的面積=AB×AD=,過點O1AB作垂線,垂足為F,根據(jù)平行四邊形的性質(zhì),O1F=OE=AD,即平行四邊形AO1C2B面積=AB×AD=,依此類推,即可得到平行四邊形AO2016C2017B的面積.

解:過點OAB作垂線,垂足為E,過點O1AB作垂線,垂足為F,如下圖所示:

∵∠DAB=∠OEB,

∴OE∥DA,

∵O為矩形ABCD的對角線交點,

∴OB=OD

∴OE=AD,

矩形ABCD的面積=AB×AD=1,

平行四邊形AOC1B的面積=AB×OE=AB×AD=,

同理,根據(jù)平行四邊形的性質(zhì),

O1F=OE=AD,

平行四邊形AO1C2B面積=AB×AD=,

依此類推:

平行四邊形AO2016C2017B的面積=AB× AD=

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,,,,點ECD上一動點,經(jīng)過A、C、E三點的BC于點F.

(操作與發(fā)現(xiàn))

E運動到處,利用直尺與規(guī)作出點E與點F;保留作圖痕跡

的條件下,證明:

(探索與證明)

E運動到任何一個位置時,求證:;

(延伸與應(yīng)用)

E在運動的過程中求EF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,tanA=.點D,E分別是邊BC,AC上的點,且∠EDC=∠A.將△ABC沿DE所在直線對折,若點C恰好落在邊AB上,則DE的長為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中有三個點A(2,3),B(1,1),C(4,2)

(1)連接AB、C三點,請在如圖中作出△ABC關(guān)于x軸對稱的圖形△ABC’并直接寫出各對稱點的坐標;(2)求△ABC的面積;(3)若Mx,y)是△ABC內(nèi)部任意一點,請直接寫出點M在△ABC’內(nèi)部的對應(yīng)點M1的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABD與等邊ACE,連接BE、CDBE的延長線與CD交于點F,下列結(jié)論:(1BE=CD ;(2AF平分∠EAC ; 3)∠BFD=60°;(4AF+FD=BF 其中正確的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年我市體育中考總分60分,其中男生1000米跑為必選項目,再在立定跳遠、跳繩、實心球擲遠、籃球運球和足球運球中選擇兩項;女生800米跑為必選項目,再在立定跳遠、跳繩、仰臥起坐、籃球運球和足球運球中選擇兩項某校對得分超過40分的20位學(xué)生的成績m進行統(tǒng)計,結(jié)果如頻數(shù)分布表所示:

a的值;

若用扇形圖來描述,求分數(shù)在內(nèi)所對應(yīng)的扇形圖的圓心角的大;

若男生小明在剛開始訓(xùn)練時在選考項目隨機選擇兩項進行訓(xùn)練,試用列舉法求小明選擇跳繩籃球運球的概率提示:可以用字母表示各個項目

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(下稱乙方案)進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當年完工),從當年開始,所治理的每家工廠一年降低的Q值都以平均值n計算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分數(shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計降低的Q值與當年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.

下面有三個推斷:

①當投擲次數(shù)是500時,計算機記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實驗次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計釘尖向上的概率是0.618;

③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB,CD都是的直徑,連接DB,過點C的切線交DB的延長線于點E.

如圖1,求證:;

如圖2,過點AEC的延長線于點F,過點D,垂足為點G,求證:

如圖3,在的條件下,當時,在外取一點H,連接CH、DH分別交于點M、N,且,點PHD的延長線上,連接PO并延長交CM于點Q,若,,,求線段HM的長.

查看答案和解析>>

同步練習(xí)冊答案