【題目】解方程
(1)4(x﹣1)=1﹣x
(2) .
【答案】
(1)解:去括號得:4x﹣4=1﹣x,
移項合并得:5x=5,
解得:x=1
(2)解:去分母得:2x+2﹣5x+1=6,
移項合并得:﹣3x=3,
解得:x=﹣1
【解析】(1)先去括號(括號外的4要與括號里的每一項都要相乘,不能漏乘),再移項合并同類項,然后將未知數(shù)系數(shù)化為1,即可求解。
(2)先去分母(兩邊同時乘以6,右邊的1也要乘以6,不能漏乘),再去括號(括號前是負(fù)號,去掉括號和負(fù)號,括號里的每一項都要變號。),然后移項合并同類項,最后把未知數(shù)的系數(shù)化為1。
【考點精析】根據(jù)題目的已知條件,利用等式和解一元一次方程的步驟的相關(guān)知識可以得到問題的答案,需要掌握等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式;先去分母再括號,移項變號要記牢.同類各項去合并,系數(shù)化“1”還沒好.求得未知須檢驗,回代值等才算了.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B、C在A、E的異側(cè),BD⊥AE于D,CE⊥AE于E.
(1)求證:BD=DE+CE;
(2)若直線AE繞A點旋轉(zhuǎn)到圖2位置時(BD<CE),其余條件不變,則BD與DE、CE的數(shù)量關(guān)系如何?請予以證明;
(3)若直線AE繞A點旋轉(zhuǎn)到圖3位置時(BD>CE),其余條件不變,問BD與DE、CE的關(guān)系如何?請直接寫出結(jié)果,不需說明理由;
(4)根據(jù)以上的討論,請用簡潔的語言表述BD與DE、CE的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將方程3x(x﹣1)=5(x+2)化為一元二次方程的一般式,正確的是( )
A.4x2﹣4x+5=0B.3x2﹣8x﹣10=0C.4x2+4x﹣5=0D.3x2+8x+10=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個條件中,由哪兩個條件可以判定△ABC是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,A(0,4),B(﹣3,0),C(2,0),D為B點關(guān)于AC的對稱點,反比例函數(shù)y= 的圖象經(jīng)過D點.
(1)證明四邊形ABCD為菱形;
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點N,y軸正半軸上一點M,且四邊形ABMN是平行四邊形,求M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A的坐標(biāo)為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點B的橫坐標(biāo)為x,點C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com