(2005•黑龍江)如圖所示,E、F是平行四邊形ABCD對(duì)角線BD上的兩點(diǎn),請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:    ,使四邊形AECF是平行四邊形.
【答案】分析:添加一個(gè)條件:BE=DF,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,可使四邊形AECF是平行四邊形.
解答:解:可添加條件:BE=DF.
證明:∵?ABCD
∴AB=CD∠ABE=∠CDF
∵BE=DF
∴△ABE≌△CDF
∴AE=CF
同理可證:△ADF≌△CBE
∴AF=CE
∴四邊形AECF是平行四邊形.
故答案為:BE=DF.
點(diǎn)評(píng):此題主要考查平行四邊形的判定:對(duì)角線互相平分的四邊形是平行四邊形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ACO=,點(diǎn)P在線段OC上,且PO、PC的長(zhǎng)(PO<PC)是關(guān)于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點(diǎn)坐標(biāo);
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫(xiě)出直線PQ的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ABC=,點(diǎn)P在線段OC上,且PO、PC的長(zhǎng)(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點(diǎn)坐標(biāo);
(2)求AP的長(zhǎng);
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫(xiě)出直線PQ的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前10日信息題復(fù)習(xí)題精選(1)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ABC=,點(diǎn)P在線段OC上,且PO、PC的長(zhǎng)(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點(diǎn)坐標(biāo);
(2)求AP的長(zhǎng);
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫(xiě)出直線PQ的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年黑龍江省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2005•黑龍江)已知拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(1,2)與(-1,4),則a+c的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年黑龍江省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ACO=,點(diǎn)P在線段OC上,且PO、PC的長(zhǎng)(PO<PC)是關(guān)于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點(diǎn)坐標(biāo);
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫(xiě)出直線PQ的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案