【題目】如圖,函數(shù) 的圖像分別與 x軸、 y軸交于 A、 B兩點,點 C在 y軸上, AC平分 .
(1) 求點 A、 B的坐標;
(2) 求 的面積;
(3) 點 P在坐標平面內(nèi),且以A、 B、P為頂點的三角形是等腰直角三角形,請你直接寫出點 P的坐標.
【答案】(1)A(6,0),B(0,8);(2)15;(3)使△PAB為等腰直角三角形的P點坐標為(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).
【解析】
(1)在函數(shù)解析式中分別令y=0和x=0,解相應方程,可求得A、B的坐標;
(2)過C作CD⊥AB于點D,由勾股定理可求得AB,由角平分線的性質(zhì)可得CO=CD,再根據(jù)S△AOB=S△AOC+S△ABC,可求得CO,則可求得△ABC的面積;
(3)可設P(x,y),則可分別表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三種情況,分別可得到關于x、y的方程組,可求得P點坐標.
解:(1)在中,
令y=0可得0=-x+8,解得x=6,
令x=0,解得y=8,
∴A(6,0),B(0,8);
(2)如圖,過點C作CD⊥AB于點D,
∵AC平分∠OAB,
∴CD=OC,
由(1)可知OA=6,OB=8,
∴AB=10,
∵S△AOB=S△AOC+S△ABC,
∴×6×8=×6×OC+×10×OC,解得OC=3,
∴S△ABC=×10×3=15;
(3)設P(x,y),則AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,
∵△PAB為等腰直角三角形,
∴有∠PAB=90°、∠PBA=90°和∠APB=90°三種情況,
①當∠PAB=90°時,則有PA2=AB2且PA2+AB2=BP2,
即,解得或,
此時P點坐標為(14,6)或(-2,-6);
②∠PBA=90°時,有PB2=AB2且PB2+AB2=PA2,
即,解得或,
此時P點坐標為(8,14)或(-8,2);
③∠APB=90°時,則有PA2=PB2且PA2+PB2=AB2,
即解得或
此時P點坐標為(-1,1)或(7,7);
綜上可知使△PAB為等腰直角三角形的P點坐標為(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學校園內(nèi)有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,學校計劃在中間留一塊邊長為(a+b)米的正方形地塊修建一座雕像,然后將陰影部分進行綠化.
(1)求綠化的面積.(用含a、b的代數(shù)式表示)
(2)當a=2,b=4時,求綠化的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC⊥BD交BD于點E,點F、M分別是AB、BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD,連接MF,NF
求證:(1)BN=MN;
(2)△MFN∽△BDC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】節(jié)約用水是我們的美德,水龍頭關閉不嚴會造成滴水,容器內(nèi)盛水與滴水時間的關系用可以顯示水量的容器做如圖的試驗,并根據(jù)試驗數(shù)據(jù)繪制出如圖的函數(shù)圖象,結合圖象解答下列問題.
()容器內(nèi)原有水多少升.
()求與之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1.
(1)建立適當?shù)钠矫嬷苯亲鴺讼岛螅酎cA(1,3)、C(2,1),則點B的坐標為______;
(2)△ABC的面積為______;
(3)判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道定理“直角三角形斜邊上的中線等于斜邊的一半”,這個定理的逆命題也是真命題.
(1)請你寫出這個定理的逆命題是________;
(2)下面我們來證明這個逆命題:如圖,CD是△ABC的中線,CD=AB.求證:△ABC為直角三角形.請你寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從家出發(fā),外出散步,到一個公共閱報欄前看了一會報后,繼續(xù)散步了一段時間,然后回家,如圖描述了小明在散步過程匯總離家的距離s(米)與散步所用時間t(分)之間的函數(shù)關系,根據(jù)圖象,下列信息錯誤的是( )
A.小明看報用時8分鐘
B.公共閱報欄距小明家200米
C.小明離家最遠的距離為400米
D.小明從出發(fā)到回家共用時16分鐘
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于點D,DE⊥AB于點E,且AB=6cm,則△DEB的周長為( 。
A.4cmB.6cmC.8cmD.以上都不對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com