【題目】已知射線AB∥射線CD,P為一動(dòng)點(diǎn),AE平分∠PAB,CE平分∠PCD,且AE與CE相交于點(diǎn)E.
(1)在圖1中,當(dāng)點(diǎn)P運(yùn)動(dòng)到線段AC上時(shí),∠APC=180°. ①直接寫(xiě)出∠AEC的度數(shù);②求證:∠AEC=∠EAB+∠ECD;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到圖2的位置時(shí),猜想∠AEC與∠APC之間的關(guān)系,并加以說(shuō)明;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到圖3的位置時(shí),(2)中的結(jié)論是否還成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)寫(xiě)出∠AEC與∠APC之間的關(guān)系,并加以證明.

【答案】
(1)解:①∵AB∥CD,

∴∠PAB+∠PCD=180°,

∴∠AEC=90°;

②證明:在圖1中,過(guò)E作EF∥AB,則∠AEF=∠EAB.

∵AB∥CD,

∴EF∥CD,

∴∠CEF=∠ECD.

∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.


(2)解:猜想:∠AEC= ∠APC,理由如下:

∵AE、CE分別平分∠PAB和∠PCD,

∴∠EAB= ∠PAB,∠ECD= ∠PCD.

由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,

∴∠AEC= ∠PAB+ ∠PCD= (∠PAB+∠PCD)= ∠APC.


(3)解:在圖3中,(2)中的結(jié)論不成立,而是滿足∠AEC=180°﹣ ∠APC,

其證明過(guò)程是:

過(guò)P作PQ∥AB,則∠PAB+∠APQ=180°.

∵AB∥CD,

∴PQ∥CD,

∴∠CPQ+∠PCD=180°.

∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°﹣∠APC.

∵AE、CE分別平分∠PAB和∠PCD,

∴∠EAB= ∠PAB,∠ECD= ∠PCD.

由(1)知∠AEC=∠EAB+∠ECD,

∴∠AEC= ∠PAB+ ∠PCD= (∠PAB+∠PCD)= (360°﹣∠APC)=180°﹣ ∠APC.


【解析】(1)①由平行線的性質(zhì)可得出∠PAB+∠PCD=180°,進(jìn)而可得出∠AEC的度數(shù); ②在圖1中,過(guò)E作EF∥AB,根據(jù)平行線的性質(zhì)可得出∠AEF=∠EAB、∠CEF=∠ECD,進(jìn)而即可證出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD;(2)猜想:∠AEC= ∠APC,由角平分線的定義可得出∠EAB= ∠PAB、∠ECD= ∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,進(jìn)而即可得出∠AEC= (∠PAB+∠PCD)= ∠APC;(3)在圖3中,(2)中的結(jié)論不成立,而是滿足∠AEC=180°﹣ ∠APC,過(guò)P作PQ∥AB,由平行線的性質(zhì)可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,進(jìn)而可得出∠PAB+∠PCD=360°﹣∠APC,再由角平分線的定義可得出∠EAB= ∠PAB、∠ECD= ∠PCD,結(jié)合(1)的結(jié)論即可證出∠AEC=180°﹣ ∠APC.
【考點(diǎn)精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直線y=-2x+3向下平移4個(gè)單位長(zhǎng)度,所得直線的解析式為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓚(gè)大小不同的等腰直角三角形三角板如圖①所示放置,圖②是由它抽象出的幾何圖形B,C,E在同一條直線上,連結(jié)DC.

(1)請(qǐng)找出圖②中的全等三角形,并給予說(shuō)明(注意:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)請(qǐng)判斷DC與BE的位置關(guān)系,并證明;
(3)若CE=2,BC=4,求△DCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有好友4人聚會(huì),每?jī)扇宋帐忠淮,共握?/span>次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,山頂有一鐵塔AB的高度為20米,為測(cè)量山的高度BC,在山腳點(diǎn)D處測(cè)得塔頂A和塔基B的仰角分別為60°45°.求山的高度BC.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=圖像的一部分 .其對(duì)稱軸為x=-1,且過(guò)點(diǎn)(-3,0).下列說(shuō)法:(1)abc<0;(2)2ab=0;(3)4a+2b+c=0;(4)若(-5,),(,)是拋物線上兩點(diǎn),則。其中說(shuō)法正確的是__________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)中,為了書(shū)寫(xiě)簡(jiǎn)便,我們通常記 k=1+2+3+…+(n﹣1)+n,如 (x+k),=(x+1)+(x+2)+(x+3)+(x+4),則化簡(jiǎn) [(x﹣k)(x﹣k﹣1)]的結(jié)果是( )
A.3x2﹣15x+20
B.3x2﹣9x+8
C.3x2﹣6x﹣20
D.3x2﹣12x﹣9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線 y=﹣2x2 向左平移 3 個(gè)單位,再向下平移 4 個(gè)單位,所得拋物線為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的兩條邊長(zhǎng)分別為35,且第三邊的長(zhǎng)c為整數(shù)c的取值可以為(  

A. 7 B. 11 C. 1 D. 10

查看答案和解析>>

同步練習(xí)冊(cè)答案