【題目】如圖,山頂有一鐵塔AB的高度為20米,為測量山的高度BC,在山腳點D處測得塔頂A和塔基B的仰角分別為60°45°.求山的高度BC.(結(jié)果保留根號)

【答案】解:(1)設山的高度BCx米,

根據(jù)題意,∠BDC=450,∴CD="BC=" x。

∵AB=20,∴AC= x20

∵∠ADC=600,,即。

解得。

答:山的高度BC米。

【解析】試題分析:Rt△BCD中,根據(jù)∠BDC的正切函數(shù),可用BC表示出CD的長;進而可在Rt△ACD中,根據(jù)∠ADC的正切函數(shù),列出關于BC的等量關系式,即可求出BC的長.

試題解析:由題意知∠ADC=60°∠BDC=45°,

Rt△BCD中,∵∠BDC=45°,

∴BC=DC

Rt△ACD中,

tanADC===

BC=,

答:小山高BC米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AD,AE是三角形ABC的高和角平分線,∠B=36°,∠C=76°,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是( )

A. <span style="color: rgb(169, 68, 66); font-size: 12px; line-height: 17.1429px; background-color: rgb(245, 245, 245);">經(jīng)過直線外一點,有且只有一條直線與已知直線垂直</span>

B. 平分弦的直徑垂直于弦。

C. 對角線互相平分且垂直的四邊形是菱形 。

D. 反比例函數(shù),當k<0時,y隨x的增大而增大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點A(a+2,b-1)在第二象限,則點B(-a,b-1)在(   )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角坐標系內(nèi)的點Px23x,4)與另一點Qx8,y)關于原點對稱,則x+y_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知射線AB∥射線CD,P為一動點,AE平分∠PAB,CE平分∠PCD,且AE與CE相交于點E.
(1)在圖1中,當點P運動到線段AC上時,∠APC=180°. ①直接寫出∠AEC的度數(shù);②求證:∠AEC=∠EAB+∠ECD;
(2)當點P運動到圖2的位置時,猜想∠AEC與∠APC之間的關系,并加以說明;
(3)當點P運動到圖3的位置時,(2)中的結(jié)論是否還成立?若成立,請說明理由;若不成立,請寫出∠AEC與∠APC之間的關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有下列說法:①直徑是圓中最長的弦;②等弧所對的弦相等;③圓中90°的角所對的弦是直徑;④相等的圓心角對的弧相等.其中正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(﹣3,1)關于原點對稱的點的坐標是(
A.(1,3)
B.(3,﹣1)
C.(﹣3,﹣1)
D.(﹣1,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果a為有理數(shù),則a>-a。()

查看答案和解析>>

同步練習冊答案