一數(shù)學研究小組探究了以下相關的兩個問題,請你也試試.
(1)如圖1,已知△ABC,BO、CO分別是∠ABC、∠ACB的平分線.試探究∠A與∠BOC的度數(shù)之間的關系.
(2)如圖2,已知點O是△ABC內切圓的圓心,點O′是△ABC外接圓的圓心.試探究∠BOC與∠BO′C的度數(shù)之間的關系.

解:(1)∠BOC=90°+∠A.
∵BO、CO分別是∠ABC、∠ACB的平分線,
∴∠1+∠2=(180°-∠A),
∴∠BOC=180°-(∠1+∠2)=180°-(180°-∠A)=90°+∠A;

(2)∠BOC=90°+∠BO′C.
∵點O是△ABC內切圓的圓心,
∴BO、CO分別是∠ABC、∠ACB的平分線,
由(1)知∠BOC=90°+∠A,
∵點O′是△ABC外接圓的圓心,
∴∠A是圓心角∠BO′C所對的圓周角,
∴∠A=∠BO′C.
∴∠BOC=90°+∠A=90°+×∠BO′C=90°+∠BO′C.
分析:(1)先根據(jù)BO、CO分別是∠ABC、∠ACB的平分線得出∠1+∠2=(180°-∠A),再根據(jù)∠1+∠2+∠BOC=180°即可得出結論;
(2)由點O是△ABC內切圓的圓心,可知BO、CO分別是∠ABC、∠ACB的平分線,由(1)知∠BOC=90°+∠A,點O′是△ABC外接圓的圓心,故可得出∠A是圓心角∠BO′C所對的圓周角,故∠A=∠BO′C,再由三角形內角和定理即可得出結論.
點評:本題考查的是三角形的內切圓與內心,解答此類問題時往往用到三角形的內角和是180°這一隱藏條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•寧德)某數(shù)學興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)小敏在線段BC上取一點M,連接AM,旋轉中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結論;
(2)當0°<α≤45°時,小敏在旋轉中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關系:BD2+CE2=DE2
同組的小穎和小亮隨后想出了兩種不同的方法進行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2)
小亮的想法:將△ABD繞點A順時針旋轉90°得到△ACG,連接EG(如圖3);
小敏繼續(xù)旋轉三角板,在探究中得出當45°<α<135°且α≠90°時,等量關系BD2+CE2=DE2仍然成立,先請你繼續(xù)研究:當135°<α<180°時(如圖4)等量關系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一數(shù)學研究小組探究了以下相關的兩個問題,請你也試試.
(1)如圖1,已知△ABC,BO、CO分別是∠ABC、∠ACB的平分線.試探究∠A與∠BOC的度數(shù)之間的關系.
(2)如圖2,已知點O是△ABC內切圓的圓心,點O′是△ABC外接圓的圓心.試探究∠BOC與∠BO′C的度數(shù)之間的關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年河南省鄭州外國語學學校中考數(shù)學預測試卷(一)(解析版) 題型:解答題

某數(shù)學興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)小敏在線段BC上取一點M,連接AM,旋轉中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結論;
(2)當0°<α≤45°時,小敏在旋轉中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關系:BD2+CE2=DE2
同組的小穎和小亮隨后想出了兩種不同的方法進行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2)
小亮的想法:將△ABD繞點A順時針旋轉90°得到△ACG,連接EG(如圖3);
小敏繼續(xù)旋轉三角板,在探究中得出當45°<α<135°且α≠90°時,等量關系BD2+CE2=DE2仍然成立,先請你繼續(xù)研究:當135°<α<180°時(如圖4)等量關系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年福建省寧德市中考數(shù)學試卷(解析版) 題型:解答題

某數(shù)學興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)小敏在線段BC上取一點M,連接AM,旋轉中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結論;
(2)當0°<α≤45°時,小敏在旋轉中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關系:BD2+CE2=DE2
同組的小穎和小亮隨后想出了兩種不同的方法進行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2)
小亮的想法:將△ABD繞點A順時針旋轉90°得到△ACG,連接EG(如圖3);
小敏繼續(xù)旋轉三角板,在探究中得出當45°<α<135°且α≠90°時,等量關系BD2+CE2=DE2仍然成立,先請你繼續(xù)研究:當135°<α<180°時(如圖4)等量關系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

同步練習冊答案