5.已知:如圖:AB∥CD,AB=CD,AD、BC相交于點(diǎn)O,BE∥CF,BE、CF分別交AD于點(diǎn)E、F,
求證:(1)OA=OD;(2)BE=CF.

分析 (1)根據(jù)平行線的性質(zhì)得到∠A=∠D,推出△ABO≌△CDO,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)根據(jù)平行線的性質(zhì)可得∠A=∠D,∠BEO=∠CFO,進(jìn)而得到∠AEB=∠DFC,然后根據(jù)AAS定理判定△ABE≌△DCF,再根據(jù)全等三角形的性質(zhì)可得EB=CF.

解答 證明:(1)∵AB∥CD,
∴∠A=∠D,
在△ABO與△CDO中,
$\left\{\begin{array}{l}{∠A=∠D}\\{∠AOB=∠DOC}\\{AB=CD}\end{array}\right.$,
∴△ABO≌△CDO,
∴AO=CO;

(2)∵AB∥CD,
∴∠A=∠D,
∵BE∥CF,
∴∠BEO=∠CFO,
∴∠AEB=∠DFC,
在△EBA和△FCD中,
$\left\{\begin{array}{l}{∠A=∠D}\\{∠AEB=∠DFC}\\{AB=CD}\end{array}\right.$,
∴△ABE≌△DCF(AAS).
∴EB=CF.

點(diǎn)評(píng) 此題主要考查了全等三角形的判定與性質(zhì),平行線的性質(zhì),關(guān)鍵是掌握全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,…,以此類推,這樣連續(xù)旋轉(zhuǎn)2015次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路程之和是3024π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在△ABC中,AD為中線,$\frac{DF}{AD}$=$\frac{3}{7}$,則$\frac{CE}{AC}$=$\frac{3}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.解方程:
(1)-3(4x-1)=4(3x+2)-1
(2)y-$\frac{y-1}{2}$=2-$\frac{y+2}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,長(zhǎng)方形ABCD中,AB=4cm,BC=6cm,現(xiàn)有一動(dòng)點(diǎn)P從A出發(fā)以2cm/秒的速度,沿矩形的邊A-B-C運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),點(diǎn)P與點(diǎn)A的距離為5cm?
(2)當(dāng)t為何值時(shí),△APD是等腰三角形?
(3)當(dāng)t為何值時(shí),(2<t<5),以線段AD、CP、AP的長(zhǎng)度為三邊長(zhǎng)的三角形是直角三角形,且AP是斜邊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

10.一條直線上順次有A、C、B三點(diǎn),線段AB的中點(diǎn)為P,線段BC的中點(diǎn)為Q,若AB=10cm,BC=6cm,則線段PQ的長(zhǎng)為2cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.解下列方程:
(1)5y-(8-3y)=3y+2(3y+5);
(2)$\frac{5-2y}{5}$-4=$\frac{y+2}{2}$-$\frac{4-7y}{10}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知:在△ABC中,AB=AC=a,M為底邊BC上任意一點(diǎn),過點(diǎn)M分別作AB、AC的平行線交AC于P,交AB于Q.
(1)寫出圖中的兩對(duì)相似三角形(不需證明);
(2)求四邊形AQMP的周長(zhǎng);
(3)M位于BC的什么位置時(shí),四邊形AQMP為菱形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線y=2x2-bx+3的對(duì)稱軸經(jīng)過點(diǎn)(2,-1),則b的值為8.

查看答案和解析>>

同步練習(xí)冊(cè)答案