【題目】直線y=kx+3和x軸、y軸的交點分別為B、C,∠OBC=30°,點A的坐標(biāo)是(,0),另一條直線經(jīng)過點A、C.
(1)求點B的坐標(biāo)及k的值;
(2)求證:AC⊥BC;
(3)點M為直線BC上一點(與點B不重合),設(shè)點M的橫坐標(biāo)為x,△ABM的面積為S.
①求S與x的函數(shù)關(guān)系式;
②當(dāng)S=6時,求點M的坐標(biāo).
【答案】(1)B(3,0),k=﹣;(2)見解析;(3)①S=;②點M的坐標(biāo)為(0,3)或(6,-3).
【解析】
(1)直線y=kx+3和y軸的交點為C,則點C(0,3),則BC=6,OB=3,則點B(3,0),即可求解;
(2)OA=,OC=3,則AC=2,則∠ACO=30°,即可求解;
(3)①點M(x,-x+3),S=×AB×|yM|即可求解;
②將S=6代入①中的函數(shù)關(guān)系式,即可求解.
解:(1)直線y=kx+3和y軸的交點為C,則點C(0,3),
則BC=6,OB=3,
則點B(3,0),
將點B的坐標(biāo)代入y=kx+3得:0=3k+3,
解得:k= -;
(2)在Rt△AOC中,OA=,OC=3,由勾股定理得AC=2,
∴∠ACO=30°,
∵∠OBC=30°,
∴∠BCO=60°,
∴∠ACB=∠ACO+∠BCO=90°,
∴AC⊥BC;
(3)①直線BC的表達(dá)式為:y=﹣x+3,則點M(x,﹣x+3),
S=×AB×|yM|=×4×|﹣x+3|,即:S=;
②當(dāng)S=6時,
∵S=
∴或
解得:x=0或x=6,
故點M的坐標(biāo)為(0,3)或(6,-3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,動點P在∠ABC的平分線BD上,動點M在BC邊上,若BC=3,∠ABC=45°,則PM+PC的最小值是( )
A. 2 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AB=4,點E為AB的中點.以AE為邊作等邊△ADE(點D與點C分別在AB的異側(cè)),連接CD.則△ACD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(1,5),直線l1:y=x,直線l2過原點且與x軸正半軸成60°夾角,在l1上有一動點M,在l2上有一動點N,連接AM、MN,則AM+MN的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將本班的“校園安全知識競賽”成績(成績用s表示,滿分為100分)分為5組,第1組:50≤x<60,第2組:60≤x<70,…,第5組:90≤x<100.并繪制了如圖所示的頻率分布表和頻數(shù)分布直方圖(不完整).
(1)請補(bǔ)全頻率分布表和頻數(shù)分布直方圖;
(2)王老師從第1組和第5組的學(xué)生中,隨機(jī)抽取兩名學(xué)生進(jìn)行談話,求第1組至少有一名學(xué)生被抽到的概率;
(3)設(shè)從第1組和第5組中隨機(jī)抽到的兩名學(xué)生的成績分別為m、n,求事件“|m﹣n|≤10”的概率.
分組編號 | 成績 | 頻數(shù) | 頻率 |
第1組 | 50≤s<60 | 0.04 | |
第2組 | 60≤s<70 | 8 | 0.16 |
第3組 | 70≤s<80 | 0.4 | |
第4組 | 80≤s<90 | 17 | 0.34 |
第5組 | 90≤s≤100 | 3 | 0.06 |
合計 | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明調(diào)查了班級里20位同學(xué)本學(xué)期購買課外書的花費情況,并將結(jié)果繪制成了如圖的統(tǒng)計圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費的眾數(shù)和中位數(shù)分別是( )
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線與軸,軸分別交于A,B兩點,過點B在第二象限內(nèi)作且,連接.
(1)求點C的坐標(biāo).
(2)如圖2,過點C作直線軸交AB于點D,交軸于點E,
請從下列A,B兩題中任選一題作答,我選擇______題
A.①求線段CD的長.
②在坐標(biāo)平面內(nèi),是否存在點M(除點B外),使得以點M,C,D為頂點的三角形與全等?若存在,請直接寫出所有符合條件的點M的坐標(biāo):若不存在,請說明理由.
B.①如圖3,在圖2的基礎(chǔ)上,過點D作于點F,求線段DF的長.
②在坐標(biāo)平面內(nèi),是否存在點M(除點F外),使得以點M,C,D為頂點的三角形與全等?若存在,請直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了50名同學(xué)進(jìn)行“舌尖上的沙縣﹣﹣我最喜愛的沙縣小吃”調(diào)查活動,將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖.
請根據(jù)所給信息解答以下問題:
(1)請補(bǔ)全條形統(tǒng)計圖;
(2)在一個不透明的口袋中有4個完全相同的小球,把它們分別標(biāo)號為四種小吃的序號A,B,C,D.隨機(jī)地摸出一個小球然后放回,再隨機(jī)地摸出一個小球.請用列表或畫樹狀圖的方法,求出兩次都摸到A的概率.
(3)近幾年,沙縣小吃產(chǎn)業(yè)發(fā)展良好,給沙縣經(jīng)濟(jì)帶來了發(fā)展.2011年底,小吃產(chǎn)業(yè)年營業(yè)額達(dá)50億元,到了2013年底,小吃產(chǎn)業(yè)年營業(yè)額達(dá)60.5億元.假設(shè)每年的小吃產(chǎn)業(yè)年營業(yè)額平均增長率不變,求這兩年平均增長率是多少?(數(shù)據(jù)來源于網(wǎng)絡(luò))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2,乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,把球上的數(shù)字記為x,再從乙袋中任意摸出一個小球,把球上的數(shù)字記為y,以此確定點M的坐標(biāo)(x,y).
(1)請你用畫樹狀圖或列表的方法(只選其中一種),寫出點M所有可能的坐標(biāo);
(2)求點M(x,y)在函數(shù)y=﹣2x的圖象上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com