如圖,AB是半圓O的直徑,過點O作弦AD的垂線交切線AC于點C,OC與半圓O交于點E,連接BE,DE.
(1)求證:∠BED=∠C;
(2)若OA=5,AD=8,求AC的長.

【答案】分析:(1)由切線的性質(zhì)得∠1+∠2=90°;由同角的余角相等得到∠C=∠2.由圓周角定理知∠BED=∠2,故∠BED=∠C;
(2)連接BD.由直徑直徑對的圓周角是直角得∠ADB=90°,由勾股定理求得
由△OAC∽△BDA得OA:BD=AC:DA,從而求得AC的值.
解答:(1)證明:∵AC是⊙O的切線,AB是⊙O直徑,
∴AB⊥AC.
則∠1+∠2=90°,
又∵OC⊥AD,
∴∠1+∠C=90°,
∴∠C=∠2,
而∠BED=∠2,
∴∠BED=∠C;

(2)解:連接BD,
∵AB是⊙O直徑,
∴∠ADB=90°,
,
∴△OAC∽△BDA,
∴OA:BD=AC:DA,
即5:6=AC:8,
∴AC=
點評:本題利用了切線的性質(zhì),直徑對的圓周角是直角,同角的余角相等,相似三角形的判定和性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點P從點B開始沿BA邊向點A以1cm/s的速度移動,若AB長為10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點D在半圓O上運動,當(dāng)AD的長為1時,求點A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點D是半圓上一動點,AB=10,AC=8,當(dāng)△ACD是等腰三角形時,點D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,以O(shè)A為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點D時AC的中點;③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,F(xiàn)為垂足,交AC于點C使∠BED=∠C.請判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案