【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與函數(shù)()的圖象相交于點(diǎn),并與軸交于點(diǎn).點(diǎn)是線段上一點(diǎn),與的面積比為2:3.
(1) , ;
(2)求點(diǎn)的坐標(biāo);
(3)若將繞點(diǎn)順時針旋轉(zhuǎn),得到,其中的對應(yīng)點(diǎn)是,的對應(yīng)點(diǎn)是,當(dāng)點(diǎn)落在軸正半軸上,判斷點(diǎn)是否落在函數(shù)()的圖象上,并說明理由.
【答案】(1)6,5;(2);(3),點(diǎn)不在函數(shù)的圖象上.
【解析】
(1)將點(diǎn)分別代入反比例函數(shù)與一次函數(shù)的表達(dá)式中即可求出k,b的值;
(2)先求出B的坐標(biāo),然后求出,進(jìn)而求出,得出C的縱坐標(biāo),然后代入到一次函數(shù)的表達(dá)式中即可求出橫坐標(biāo);
(3)先根據(jù)題意畫出圖形,利用旋轉(zhuǎn)的性質(zhì)和,求出 的縱坐標(biāo),根據(jù)勾股定理求出橫坐標(biāo),然后判斷橫縱坐標(biāo)之積是否為6,若是,說明在反比例函數(shù)圖象上,反之則不在.
(1)將點(diǎn)代入反比例函數(shù)中得 ,
∴
∴反比例函數(shù)的表達(dá)式為
將點(diǎn)代入一次函數(shù)中得 ,
∴
∴一次函數(shù)的表達(dá)式為
(2)當(dāng)時, ,解得
∵與的面積比為2:3.
設(shè)點(diǎn)C的坐標(biāo)為
當(dāng)時,,解得
∴
(3)如圖,過點(diǎn) 作 于點(diǎn)D
∵繞點(diǎn)順時針旋轉(zhuǎn),得到
∴
∴點(diǎn)不在函數(shù)的圖象上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度).
(1)作出△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)90°后得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)作出△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2,并直接寫出B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,AE⊥BC,AF⊥CD,垂足分別為點(diǎn)E,F,且BE=DF.
(1)如圖1,求證:ABCD是菱形;
(2)如圖2,連接BD,交AE于點(diǎn)G,交AF于點(diǎn)H,連接EF、FG,若∠CEF=30°,在不添加任何字母及輔助線的情況下,請直接寫出圖中面積是△BEG面積2倍的所有三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ABDF為菱形時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(k是常數(shù))
(1)求此函數(shù)的頂點(diǎn)坐標(biāo).
(2)當(dāng)時,隨的增大而減小,求的取值范圍.
(3)當(dāng)時,該函數(shù)有最大值,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與軸和軸分別交于、兩點(diǎn),與反比例函數(shù)的圖象分別交于、兩點(diǎn).
(1)如圖,當(dāng),點(diǎn)在線段上(不與點(diǎn)、重合)時,過點(diǎn)作軸和軸的垂線,垂足為、.當(dāng)矩形的面積為2時,求出點(diǎn)的位置;
(2)如圖,當(dāng)時,在軸上是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
(3)若某個等腰三角形的一條邊長為5,另兩條邊長恰好是兩個函數(shù)圖象的交點(diǎn)橫坐標(biāo),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過A,B,C三點(diǎn).
(1)求拋物線的解析式。
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線上的動點(diǎn),判斷有幾個位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在等腰直角三角形ABC中,AB=BC,∠ABC=90°.D是平面上一點(diǎn),連結(jié)BD.將線段BD繞點(diǎn)B逆時針旋轉(zhuǎn)90°得到線段BE,連結(jié)AE,CD.
(1)在圖1中補(bǔ)全圖形,并證明:AE⊥CD.
(2)當(dāng)點(diǎn)D在平面上運(yùn)動時,請猜測線段AD,CE,AB,BD之間的數(shù)量關(guān)系.
(3)如圖2,作點(diǎn)A關(guān)于直線BE的對稱點(diǎn)F,連結(jié)AD,DF,BF.若AB=11,BD=7,AD=14,求線段DF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是( 。
A. 若點(diǎn)(3,6)在其圖象上,則(﹣3,6)也在其圖象上
B. 當(dāng)k>0時,y隨x的增大而減小
C. 過圖象上任一點(diǎn)P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com