如圖,直線EF交⊙O于A、B兩點,AC是⊙O直徑,DE是⊙O的切線,且DE⊥EF,垂足為E.若∠CAE=130°,則∠DAE=    °.
【答案】分析:連接OD,通過切線的性質(zhì)得到OD⊥DE,再利用平行及由兩半徑組成的等腰三角形進行角度的計算得到結(jié)果.
解答:解:連OD,如圖,
∵DE是⊙O的切線,
∴OD⊥DE,
又∵DE⊥EF,
∴OD∥EF,
∴∠DOA+OAE=180°;
而∠CAE=130°,
∴∠DOA=50°,
∴∠ADO==65°,
∴∠DAE=65°.
故填65.
點評:掌握圓的切線性質(zhì):圓的切線垂直于過切點的半徑.注意:兩個半徑組成的三角形是等腰三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線EF交⊙O于A、B兩點,AC是⊙O直徑,DE是⊙O的切線,且DE⊥EF,垂足為E.
(1)求證:AD平分∠CAE;
(2)若DE=4cm,AE=2cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線EF交⊙O于A、B兩點,AC是⊙O直徑,DE是⊙O的切線,且DE⊥EF,垂足為E.若∠CAE=130°,則∠DAE=
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線EF交⊙O于A、B兩點,AC是⊙O直徑,DE是⊙O的切線,且DE⊥EF,垂足為E.

(1)求證:AD平分∠CAE;

 (2). 若DE=4cm,AE=2cm,求⊙O的面積。

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣西武鳴中考第一次模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線EF交⊙O于A、B兩點,AC是⊙O直徑,DE是⊙O的切線,且DE⊥EF,垂足為E.

(1)求證:AD平分∠CAE;

(2)若DE=4cm,AE=2cm,求⊙O的半徑.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖南長沙市畢業(yè)學(xué)業(yè)考試模擬數(shù)學(xué)卷(1) 題型:解答題

如圖,直線EF交⊙O于A、B兩點,AC是⊙O直徑,DE是⊙O的切線,且DE⊥EF,垂足為E.

 

1.求證:AD平分∠CAE。

2. 若DE=4cm,AE=2cm,求⊙O的面積。

 

查看答案和解析>>

同步練習(xí)冊答案