如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,點O為對角線的交點,且∠CAE=15°,則∠BOE=    度.
【答案】分析:已知EA平分∠BAD,即∠BAE=45°;又已知∠CAE=15°,即∠BAO=60°,可得出的條件是△AOB為等邊三角形,即AB=BO;而∠BAE=45°,可知△ABE是等腰直角三角形,則BO=BE=AB;等腰△BOE中,易求得∠OBE=30°,根據(jù)三角形內(nèi)角和定理,可求出∠BOE的度數(shù).
解答:解:如圖,連接OE;
∵四邊形ABCD是矩形,且EA平分∠BAD,
∴∠BAE=45°;
∴△ABE是等腰直角三角形,得AB=BE;
∵∠CAE=15°,
∴∠BAO=∠CAE+∠BAE=60°;
又∵OA=OB,
∴△BAO是等邊三角形,得AB=BO;
∴BO=BE;
∵∠OBC=90°-∠ABO=30°;
∴∠BOE=(180°-30°)÷2=75°.
故答案為75.
點評:本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、三角形內(nèi)角和定理等知識.能夠看出△BOE是等腰三角形是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設(shè)經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關(guān)系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設(shè)線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊答案