如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(-2,4),過點A作AB⊥y軸,垂足為B,連接OA.

(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點A.
①求c的值;
②將拋物線向下平移m個單位,使平移后得到的拋物線頂點落在△OAB的內部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).
(1)4  (2)①c=4  ②1<m<3
(1)根據(jù)點A的坐標是(-2,4),得出AB,BO的長度,即可得出△OAB的面積;
(2)①把點A的坐標(-2,4)代入y=-x2-2x+c中,直接得出即可;
②利用配方法求出二次函數(shù)解析式即可得出頂點坐標,根據(jù)AB的中點E的坐標以及F點的坐標即可得出m的取值范圍.
解:(1)∵點A的坐標是(-2,4),AB⊥y軸,
∴AB=2,OB=4,
∴△OAB的面積為:×AB×OB=×2×4=4,
(2)①把點A的坐標(-2,4)代入y=-x2-2x+c中,
-(-2)2-2×(-2)+c=4,
∴c=4,
②∵y=-x2-2x+4=-(x+1)2+5,
∴拋物線頂點D的坐標是(-1,5),
過點D作DE⊥AB于點E交AO于點F,

AB的中點E的坐標是(-1,4),OA的中點F的坐標是(-1,2),
∴m的取值范圍是:1<m<3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線的圖象過點C(0,1),頂點為Q(2,3)點D在x軸正半軸上,且線段OD=OC
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設△PBQ的面積為S,試寫出S與t之間的函數(shù)關系式,并寫出t的取值范圍.
②當S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”,已知點C的坐標為(0,-),點M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點.

(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限內是否存在一點P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請說明理由;
(3)當∆BDM為直角三角形時,請直接寫出m的值.(參考公式:在平面直角坐標系中,若M(x1,y1),N(x2,y2),則M、N兩點間的距離為MN=.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

西寧中心廣場有各種音樂噴泉,其中一個噴水管噴水的最大高度為3米,此時距噴水管的水平距離為米,在如圖所示的坐標系中,這個噴泉的函數(shù)關系式是(  )
A.y=-+3B.y=-3+3
C.y=-12+3D.y=-12+3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

飛機著陸后滑行的距離S(單位:m)與滑行的時間t(單位:S)的函數(shù)關系式是,則飛機著陸后滑行       米才能停下來。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某經(jīng)銷商代理銷售一種手機,按協(xié)議,每賣出一部手機需另交品牌代理費100元,已知該種手機每部進價800元,銷售單價為1200元時,每月能賣出100部,市場調查發(fā)現(xiàn),若每部手機每讓利50元,則每月可多售出40部.
(1)若每月要獲取36000元利潤,求讓利價
(利潤=銷售收入-進貨成本-品牌代理費)
(2)設讓利x元,月利潤為y元,寫出y與x的函數(shù)關系式,并求讓利多少元時,月利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

甲、乙兩位同學對問題“求代數(shù)式的最小值”提出各自的想法.甲說:“可以利用已經(jīng)學過的完全平方公式,把它配方成,所以代數(shù)式的最小值為-2”.乙說:“我也用配方法,但我配成,最小值為2”.你認為(    )
A.甲對B.乙對C.甲、乙都對D.甲乙都不對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結論正確的是(  ).
A.ac>0
B.方程ax2+bx+c=0的兩根是x1=-1,x2=3
C.2a-b=0
D.當y>0時,y隨x的增大而減小

查看答案和解析>>

同步練習冊答案