【題目】如圖,點E到△ABC三邊的距離相等,過點EMNBCABM,交ACN.BMCN2019,則線段NM的長為( )

A.2017B.2018C.2019D.2020

【答案】C

【解析】

由∠ABC、∠ACB的平分線相交于點E,∠MBE=EBC,∠ECN=ECB,利用兩直線平行,內(nèi)錯角相等,利用等量代換可∠MBE=MEB,∠NEC=ECN,然后即可求得結論.

解:∵∠ABC、∠ACB的平分線相交于點E,

∴∠MBE=EBC,∠ECN=ECB

MNBC,

∴∠EBC=MEB,∠NEC=ECB,

∴∠MBE=MEB,∠NEC=ECN

BM=ME,EN=CN,

MN=ME+EN, MN=BM+CN

BM+CN=2019,

MN=2019,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲騎自行車從地出發(fā)前往地,同時乙步行從地出發(fā)前往地,如圖的折線和線段,分別表示甲、乙兩人與地的距離 ,與他們所行時間之間的函數(shù)關系.

1)求線段對應的的函數(shù)關系式并注明自變量的取值范圍;

2)求的函數(shù)關系式及乙到達地所用的時間;

3)經(jīng)過 小時,甲、乙兩人相距

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:弦切角:頂點在圓上,一邊與圓相交,另一邊和圓相切的角叫弦切角.

問題情景:已知如圖所示,直線的切線,切點為,的一條弦,為弧所對的圓周角.

(1)猜想:弦切角之間的關系.試用轉化的思想:即連接并延長交于點,連接,來論證你的猜想.

(2)用自己的語言敘述你猜想得到的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點C,D,E三點在同一條直線上,連接BDBE.以下四個結論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC

(1)如圖1,若點O在邊BC上,OEAB,OFAC,垂足分別為E,F.求證:AB=AC;

(2)如圖,若點O在△ABC的內(nèi)部,求證:AB=AC;

(3)若點O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內(nèi)一點,∠BOC,∠AOC100°,將△BOC繞點B按逆時針方向旋轉60°得到△BDA,連接OD.

(1) 求證:△BOD是等邊三角形.

(2) 150°時,試判斷△AOD的形狀,并說明理由.

(3) 若△AOD是等腰三角形,請你直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,已知點D在線段AB的反向延長線上,AC的中點F作線段GEDAC的平分線于E,BCG,AEBC

(1)求證ABC是等腰三角形;

(2)AE=8,AB=10,GC=2BG,ABC的周長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:線段AB,BC

求作:平行四邊形ABCD

以下是甲、乙兩同學的作業(yè).

甲:

①以點C為圓心,AB長為半徑作。

②以點A為圓心,BC長為半徑作;

③兩弧在BC上方交于點D,連接AD,CD

四邊形ABCD即為所求平行四邊形.(如圖1

乙:

①連接AC,作線段AC的垂直平分線,交AC于點M;

②連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD

四邊形ABCD即為所求平行四邊形.(如圖2

老師說甲、乙同學的作圖都正確,你更喜歡______的作法,他的作圖依據(jù)是:______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形中,點分別在邊,上,,過點,交的延長線與點.若一邊的邊長為2,則的周長為_________

查看答案和解析>>

同步練習冊答案