如圖,在矩形ABCD中,AB=9,AD=3數(shù)學(xué)公式,點(diǎn)P是邊BC上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,點(diǎn)C重合),過(guò)點(diǎn)P作直線(xiàn)PQ∥BD,交CD邊于Q點(diǎn),再把△PQC沿著動(dòng)直線(xiàn)PQ對(duì)折,點(diǎn)C的對(duì)應(yīng)點(diǎn)是R點(diǎn),設(shè)CP的長(zhǎng)度為x,△PQR與矩形ABCD重疊部分的面積為y.

(1)求∠CQP的度數(shù);
(2)當(dāng)x取何值時(shí),點(diǎn)R落在矩形ABCD的AB邊上;
(3)①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)x取何值時(shí),重疊部分的面積等于矩形面積的數(shù)學(xué)公式

解:(1)如圖,∵四邊形ABCD是矩形,
∴AB=CD,AD=BC.
又AB=9,AD=3,∠C=90°,
∴CD=9,BC=
∴tan∠CDB=,
∴∠CDB=30°.
∵PQ∥BD,
∴∠CQP=∠CDB=30°;

(2)如圖1,由軸對(duì)稱(chēng)的性質(zhì)可知,△RPQ≌△CPQ,
∴∠RPQ=∠CPQ,RP=CP.
由(1)知∠CQP=30°,
∴∠RPQ=∠CPQ=60°,
∴∠RPB=60°,
∴RP=2BP.
∵CP=x,
∴PR=x,PB=-x.
在△RPB中,根據(jù)題意得:2(-x)=x,
解這個(gè)方程得:x=2;

(3)①當(dāng)點(diǎn)R在矩形ABCD的內(nèi)部或AB邊上時(shí),
,,
∵△RPQ≌△CPQ,
∴當(dāng)0<x≤時(shí),
當(dāng)R在矩形ABCD的外部時(shí)(如圖2),,
在Rt△PFB中,
∵∠RPB=60°,
∴PF=2BP=2(-x),
又∵RP=CP=x,
∴RF=RP-PF=3x-6
在Rt△ERF中,
∵∠EFR=∠PFB=30°,
∴ER=x-6.
∴S△ERF=ER×FR=x2-18x+18
∵y=S△RPQ-S△ERF,
∴當(dāng)時(shí),y=x2+18x-18
綜上所述,y與x之間的函數(shù)解析式是:
②矩形面積=,
當(dāng)時(shí),函數(shù)隨自變量的增大而增大,
所以y的最大值是,而矩形面積的的值=,
,所以,當(dāng)時(shí),y的值不可能是矩形面積的;
當(dāng)時(shí),根據(jù)題意,得:,
解這個(gè)方程,得,
因?yàn)?img class='latex' src='http://thumb.1010pic.com/pic5/latex/314720.png' />,
所以不合題意,舍去.
所以
綜上所述,當(dāng)時(shí),△PQR與矩形ABCD重疊部分的面積等于矩形面積的
分析:(1)由于PQ與BD平行,∠CQP=∠CDB,因此只需求出∠CDB的度數(shù)即可.可在直角三角形ABD中,根據(jù)AB,AD的長(zhǎng)求出∠ABD的度數(shù),由∠CQP=∠CDB=∠ABD即可得出∠CQP的度數(shù);
(2)當(dāng)R在AB上時(shí),三角形PBR為直角三角形,且∠BPR=60°(可由(1)的結(jié)論得出),根據(jù)折疊的性質(zhì)PR=CP=x,然后用x表示出BP的長(zhǎng),在直角三角形可根據(jù)∠RPB的余弦值得出關(guān)于x的方程即可求出x的值;
(3)①要分兩種情況進(jìn)行討論:
一、當(dāng)R在AB或矩形ABCD的內(nèi)部時(shí),重合部分是三角形PQR,那么重合部分的面積可通過(guò)求三角形CQP的面積來(lái)得出,在直角三角形CQP中,已知了∠CQP的度數(shù),可用CP即x的值表示出CQ的長(zhǎng),然后根據(jù)三角形的面積計(jì)算公式可得出y,x的函數(shù)關(guān)系式;
二、當(dāng)R在矩形ABCD的外部時(shí),重合部分是個(gè)四邊形的面積,如果設(shè)RQ,RP與AB的交點(diǎn)分別為E、F,那么重合部分就是四邊形EFPQ,它的面積=△CQR的面積-△REF的面積.△CQR的面積在一已經(jīng)得出,關(guān)鍵是求△REF的面積,首先要求出的是兩條直角邊RE,RF的表達(dá)式,可在直角三角形PBF中用一的方法求PF的長(zhǎng),即可通過(guò)RP-PF得出RF的長(zhǎng);在直角三角形REF中,∠RFE=∠PFB=30°,可用其正切值表示出RE的長(zhǎng),然后可通過(guò)三角形的面積計(jì)算公式得出三角形REF的面積.進(jìn)而得出S與x的函數(shù)關(guān)系式;
②可將矩形的面積代入①的函數(shù)式中,求出x的值,然后根據(jù)自變量的取值范圍來(lái)判定求出的x的值是否符合題意.
點(diǎn)評(píng):本題結(jié)合了矩形的性質(zhì)以及折疊的性質(zhì)考查了二次函數(shù)的綜合應(yīng)用,要注意的是(3)中要根據(jù)R點(diǎn)的不同位置進(jìn)行分類(lèi)討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度向點(diǎn)C運(yùn)動(dòng),設(shè)經(jīng)過(guò)的時(shí)間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關(guān)系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線(xiàn)AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線(xiàn)CE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C→D路線(xiàn)向點(diǎn)D勻速運(yùn)動(dòng),到達(dá)點(diǎn)D后停止;點(diǎn)Q從點(diǎn)D出發(fā),沿 D→C→B→A路線(xiàn)向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后停止.若點(diǎn)P、Q同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,Q點(diǎn)停留了1s,圖②是P、Q兩點(diǎn)在折線(xiàn)AB-BC-CD上相距的路程S(cm)與時(shí)間t(s)之間的函數(shù)關(guān)系圖象.
(1)請(qǐng)解釋圖中點(diǎn)H的實(shí)際意義?
(2)求P、Q兩點(diǎn)的運(yùn)動(dòng)速度;
(3)將圖②補(bǔ)充完整;
(4)當(dāng)時(shí)間t為何值時(shí),△PCQ為等腰三角形?請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,∠AOB=60°,AB=6,則AD=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線(xiàn)段BC上的動(dòng)點(diǎn)(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)x為何值時(shí),y的值最大,最大值是多少?
(3)若設(shè)線(xiàn)段AB的長(zhǎng)為m,上述其它條件不變,m為何值時(shí),函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習(xí)冊(cè)答案