如圖,⊙O的半徑為2,弦AB=,點C在弦AB上,AC=AB,則OC的長為( )

A.
B.
C.
D.
【答案】分析:首先過點O作OD⊥AB于點D,由垂徑定理,即可求得AD,BD的長,然后由勾股定理,可求得OD的長,然后在Rt△OCD中,利用勾股定理即可求得OC的長.
解答:解:過點O作OD⊥AB于點D,
∵弦AB=2,
∴AD=BD=AB=,AC=AB=,
∴CD=AD-AC=
∵⊙O的半徑為2,
即OB=2,
∴在Rt△OBD中,OD==1,
在Rt△OCD中,OC==
故選D.
點評:此題考查了垂徑定理與勾股定理的應用.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標原點重合,在直角坐標系中,把橫坐標、縱坐標都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設(shè)L為經(jīng)過⊙O上任意兩個格點的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習冊答案